Mark schemes

1 C
 2

3 C

4 B
5 B
6 B

13 (a)

peak 8.7 (accept $8.0-9.2$)
in MeV^{\vee}
(or peak 1.4×10^{-12} accept $1.3-1.5 \times 10^{-12}$ in $\mathrm{J}^{\text {r }}$)
at nucleon number $50-60 \vee$ accept $50-75$
sharp rise from origin and moderate fall not below $2 / 3$ of peak height \checkmark
(b) energy is released/made available when binding energy per nucleon is increased \checkmark
in fission a (large) nucleus splits and in fusion (small) nuclei join \imath^{\prime}
the most stable nuclei are at a peak
fusion occurs to the left of peak and fission to the right \checkmark

$\max 3$

14
(a) (i) $\Delta m=Z m_{\mathrm{p}}+(A-Z) m_{\mathrm{n}}-M(1)$
(ii) binding energy per nucleon $=\frac{(\Delta m) c^{2}}{A}$
(b) (i) $\quad A$ in range $54 \rightarrow 64$ (1)
stability increases as binding energy per nucleon increases (1)
[or binding energy per nucleon is a measure of stability]
[or large binding energy per nucleon shows nucleus is difficult to break apart]
(ii) binding energy per nucleon increases from about 7.6 to 8.5 (1) increase of about 0.9 MeV for 235 nucleons (1)
hence $210 \mathrm{MeV}(\approx 200 \mathrm{MeV})$ in total (1)

15 (a) (i) Fission occurs at A values above the peak / above A of about 56 and fusion occurs at A values below the peak / below A of about $56 \checkmark$

Fission is the splitting of a nucleus (into two smaller ones) and fusion is the joining of two nuclei \checkmark

First mark uses the graph so 'fission occurs in very large nuclei' does not gain a mark. (allow other interpretations that use the graph eg gradients)
2nd Mark splitting into 2 is not required for fission but if the answer implies something different like the separating of all the nucleons the mark may not be given.
(ii) Energy is released when the binding energy (per nucleon) is increased \checkmark fusion energy is greater as the increase in $\mathrm{BE}(/ \mathrm{A})$ for fusion > increase in $\mathrm{BE}(/ \mathrm{A})$ for fission (owtte) \checkmark

The last point can be given for a reference to the larger gradient at small values of A (fusion region) compared to the gradient at large values of A (fission region)
(b) (i) $\Delta m=\left(8 m_{\mathrm{p}}+8 m_{\mathrm{n}}\right)-\mathrm{M}_{\text {oxygen }}$
mark for substituting data into the above equation in any workable consistent units
$=8(1.00867+1.00728)-15.991 \checkmark$
$(\Delta m=0.1366 u$
$\left.\Delta m=0.1366 \times 1.661 \times 10^{-27}\right)=2.3 \times 10^{-28}(\mathrm{~kg}) \checkmark$
(range of answers $2.2-2.3 \times 10^{-28} \mathrm{~kg}$)
Substitution may take the following form
$8\left(1.673 \times 10^{-27}\right)+8\left(1.675 \times 10^{-27}\right)-\left(15.991 \times 1.661 \times 10^{-27}\right) \checkmark$
$=2.23 \times 10^{-28}(\mathrm{~kg}) \checkmark$
Correct answer gains full marks.
Look out for a physics error in which u is not taken as 1.661×10^{-27} kg
(ii) $E=m \times c^{2}=2.3 \times 10^{-28} \times\left(3.00 \times 10^{8}\right)^{2}=2.07 \times 10^{-11} \mathrm{~J}$
$B E=2.07 \times 10^{-11} / 1.6 \times 10^{-13}=130(\mathrm{MeV}) \checkmark(129 \mathrm{MeV})$ Or using
using $\Delta \mathrm{m}=0.1366 \mathrm{u}$ (this must appear in $\mathrm{b}(\mathrm{i})$ for this approach)
$B E=0.1366 \times 931.3=130(\mathrm{MeV}) \checkmark(127 \mathrm{MeV})$
CE is allowed but only if the calculation is shown
Note answer $=b(i) \times 5.625 \times 10^{29}$
answer only is acceptable for one mark.
(factor may be 931 or 931.5)
(iii) read from the graph the BE / A for ${ }_{8}^{16} \mathrm{O}$ and multiply by the number of nucleons (or 16) \checkmark
Or show the calculation
$B E=8(\mathrm{Mev}) \times 16$ (nucleons) $=130(\mathrm{MeV}) \checkmark(128 \mathrm{MeV}) \checkmark$
There must be a reference to ${ }_{8}^{16} \mathrm{O}$ position on the graph.
with the calculation allow $B E=8.1(\mathrm{Mev}) \times 16$ (nucleons) $=130$
(MeV)
A calculation may lead to an answer in joule

16 (a) nucleon number 4
proton number 2
(b) (i) mass of products is less than mass of reactants / binding energy per nucleon increases / mass defect increases / 'loss' of mass
change in mass converted to energy
B1
\qquad
(2)
(ii) change in mass $=4.8 \times 10^{-29} \mathrm{~kg}$
$E=m c^{2}$
$4.3 \times 10^{-12} \mathrm{~J}\left(4.30 \times 10^{-12} \mathrm{~J}\right)$
(if truncated sig. figs used only 2nd mark available)
(a) (using mass defect $=\Delta m=\mathrm{Z} \mathrm{m}_{\mathrm{p}}+\mathrm{N} \mathrm{m} \mathrm{m}_{\mathrm{n}}-\mathrm{M}_{\mathrm{Co}}$)
$\Delta m=27 \times 1.00728+32 \times 1.00867-58.93320(\mathrm{u}) \checkmark$
$\Delta m=0.5408(\mathrm{u}) \checkmark$
Binding Energy $=0.5408 \times 931.5=503.8(\mathrm{MeV}) \checkmark$ (CE this mark stands alone for the correct energy conversion even if more circular routes are followed.

Look at use of first equation and if electrons are used or mass of proton and neutron confused score $=0$.
If subtraction is the wrong way round lose 1 mark.
Data may come from rest mass eg $m_{n}=939.551 \mathrm{MeV}$ or $1.675 \times$ $10^{-27} \mathrm{~kg}$ or 1.00867 u .
So if kg route used $\Delta m=8.83 \times 10^{-28} \mathrm{~kg} B E=7.95 \times 10^{-28} \mathrm{~J}$ and 497 Mev.
Conversion mark (2nd) may come from a wrong value worked through. 0.47(5)
(b) $(2.52-1.76) \times 10^{-13}=7.6 \times 10^{-14} \mathrm{~J} \checkmark$
$7.6 \times 10^{-14} / 1.60 \times 10^{-13}=0.47$ or $0.48 \mathrm{MeV} \sqrt{ }(0.475 \mathrm{MeV})$
Correct answer scores both marks.
(c) 6 (specific wavelengths)

(d) (longest wavelength = lowest frequency = smallest energy)

$$
\begin{aligned}
& \left(2.29 \times 10^{-13}-2.06 \times 10^{-13}\right)=2.3 \times 10^{-14}(\mathrm{~J}) \checkmark \\
& \lambda(=h c / E)=6.63 \times 10^{-34} \times 3.00 \times 10^{8} / 2.3 \times 10^{-14} \checkmark \\
& \lambda=8.6-8.7 \times 10^{-12}(\mathrm{~m}) \checkmark\left(8.6478 \times 10^{-12} \mathrm{~m}\right)
\end{aligned}
$$

Allow a CE in the second mark only if the energy corresponds to an energy gap including those to the ground state.
The allowed energy gaps for CE are:
$2.29,2.06,1.76,0.53,0.30 \mathrm{all} \times 10^{-13}$
Note substitution rather than calculation gains mark.
The final mark must be as shown here and not from a CE above.

18 (a) the amount of energy required to separate a nucleus \checkmark into its separate neutrons and protons / nucleons \checkmark (or energy released on formation of a nucleus \checkmark from its separate neutrons and protons / constituents $\sqrt{ }$)
$1^{\text {st }}$ mark is for correct energy flow direction
$2^{\text {nd }}$ mark is for binding or separating nucleons (nucleus is in the question but a reference to an atom will lose the mark)
ignore discussion of SNF etc
both marks are independent
(b) (i) $2{ }_{0}^{1} \mathrm{n}$ or ${ }_{0}^{1} \mathrm{n}+{ }_{0}^{1} \mathrm{n} \checkmark$
must see subscript and superscripts
(ii) binding energy of U

$$
=235 \times 7.59 \checkmark(=1784(\mathrm{MeV}))
$$

binding energy of Tc and In
$=112 \times 8.36+122 \times 8.51 \checkmark$
(= 1975 (MeV))
energy released $(=1975-1784)=191(\mathrm{MeV}) \checkmark($ allow 190 MeV$)$
$1^{\text {st }}$ mark is for 235×7.59 seen anywhere
$2^{\text {nd }}$ mark for $112 \times 8.36+122 \times 8.51$ or 1975 is only given if there are no other terms or conversions added to the equation (ignore which way round the subtraction is positioned)
correct final answer can score 3 marks
(iii) energy released

$$
\begin{aligned}
& =191 \times 1.60 \times 10^{-13} \checkmark \\
& \left(=3.06 \times 10^{-11} \mathrm{~J}\right) \\
& \text { loss of mass }\left(=E / \mathrm{c}^{2}\right) \\
& \left.=2.91 \times 10^{-11} /\left(3.00 \times 10^{8}\right)^{2}\right) \\
& =3.4 \times 10^{-28}(\mathrm{~kg}) \checkmark \\
& \text { or } \\
& =191 / 931.5 \mathrm{u} \checkmark(=0.205 \mathrm{u}) \\
& =0.205 \times 1.66 \times 10^{-27}(\mathrm{~kg}) \\
& =3.4 \times 10^{-28}(\mathrm{~kg}) \checkmark \\
& \quad \text { allow } C E \text { from (ii) } \\
& \quad \text { working must be shown for a CE otherwise full marks can be given } \\
& \text { for correct answer only } \\
& \quad \text { note for } C E \\
& \quad \text { answer }=(i i) \times 1.78 \times 10^{-30} \\
& \left(2.01 \times 10^{-27}\right. \text { is a common answer) }
\end{aligned}
$$

(c) (i) line or band from origin, starting at 45° up to Z approximately $=20$ reading $Z=80, N=110 \rightarrow 130 \checkmark$
initial gradient should be about 1 (ie $Z=20 ; N=15 \rightarrow 25$) and overall must show some concave curvature. (lgnore slight waviness in the line)
if band is shown take middle as the line if line stops at $N>70$ extrapolate line to $N=80$ for marking

19 (a) (i) heat water to $100^{\circ} \mathrm{C}$, energy $(=190 \times 4200 \times 79)=63(\mathrm{MJ})(1)$ vapourise water, energy
$\left(=190 \times 2.3 \times 10^{6}\right)=440(\mathrm{MJ})(1)$
(437MJ)
energy transferred $($ per sec $)=(437+63) \mathrm{MJ}(1)$
($=500 \mathrm{MJ}$)
(ii) mass of rocks $\left(=4.0 \times 10^{6} \times 3200\right)$
$=1.3 \times 10^{10}(\mathrm{~kg})(1)$
$\left(1.28 \times 10^{10}\right)$
temperature fall of ΔT in one day, energy removed $\left(=1.28 \times 10^{10} \times 850 \times \Delta T\right)=1.1 \times 10^{13} \Delta T(1)$
$\left(1.09 \times 10^{13} \mathrm{AT}\right)$
(allow C.E. for value of mass of rocks)
energy transfer in one day $\left(=500 \times 10^{6} \times 3600 \times 24\right)$
$=4.3 \times 10^{13}(\mathrm{~J})(1)$
in one day $\Delta T\left(=\frac{4.3 \times 10^{13}}{1.1 \times 10^{13}}\right)=3.9(1) \mathrm{K}(1)$
(b) number of nuclei in 1 kg of ${ }^{238} \mathrm{U}=\left(\frac{6.02 \times 10^{23}}{0.238}\right)=2.5(3) \times 10^{24}$
activity of lkg of ${ }^{238} \mathrm{U}=\frac{1 n 2}{T_{1 / 2}} \times 2.53 \times 10^{24}$

$$
\left(=\frac{1 n 2}{4.5 \times 10^{9} \times 3.1 \times 10^{7}} \times 2.53 \times 10^{24}\right)=1.2(6) \times 10^{7}\left(s^{-1}\right)
$$

energy released per sec per kg of ${ }^{238} \mathrm{U}$
$=1.2(6) \times 10^{7} \times 4.2 \times 1.6 \times 10^{-13}(\mathrm{~J})(1)$
$\left(8.47 \times 10^{-6}(\mathrm{~J})\right)$
mass of ${ }^{238}$ Uneeded $=\frac{500 \times 10^{6}}{8.47 \times 10^{-6}}=5.9(0) \times 10^{13} \mathrm{~kg}(1)$

20 (a) (i) $1 / 12$ the mass of an (atom) of ${ }_{8}^{12} \mathrm{C} /$ carbon-12 / C12 \checkmark a reference to a nucleus loses the mark
(ii) separated nucleons have a greater mass \checkmark (than when inside a nucleus) an answer starting with 'its' implies the nucleus because of the (binding) energy added to separate the nucleons or energy is released when a nucleus is formed (owtte) \checkmark marks are independent direction of energy flow or work done must be explicit
(b) nuclei need to be close together (owtte) for the Strong Nuclear Force to be involved or for fusion to take place \checkmark
e.g. first mark - within the range of the SNF
but the electrostatic / electromagnetic force is repulsive (and tries to prevent this)
(if the temperature is high then) the nuclei have (high) kinetic energy / speed (to overcome the repulsion)
$3^{\text {rd }}$ mark is for a simple link between temperature and speed / KE
(c) (i) $15 \checkmark$
give the middle mark easily for any e or β with a + in any position

$$
\mathrm{e}^{+} \checkmark\left(\operatorname{or} \beta^{+}, 0,{ }_{1}^{0},{ }_{1}^{0} \mathrm{e}\right)
$$

$12 \checkmark$
(ii) $\quad \Delta$ mass $=4 \times 1.00728-4.00150-\left(2 \times 9.11 \times 10^{-31} / 1.661 \times 10^{-27}\right)$
or
Δ mass $=\{4 \times 1.00728-4.00150-2 \times 0.00055\}(u) \checkmark$
($4 \times 1.00728=4.02912$)
$1^{\text {st }}$ mark - correct subtractions in any consistent unit. use of $m_{p}=$ $1.67 \times 10^{-27} \mathrm{~kg}$ will gain this mark but will not gain the $2^{\text {nd }}$ as it will not produce an accurate enough result
Δ mass $=0.02652(u)$
$2^{\text {nd }}$ mark - for calculated value
$0.02652 u$
$4.405 \times 10^{-29} \mathrm{~kg}$
$3.364 \times 10^{-12} \mathrm{~J}$
Δ binding energy (= 0.02652×931.5) \{allow 931.3\}
Δ binding energy $=24.7 \mathrm{MeV} \checkmark$
$3^{\text {rd }}$ mark - conversion to Mev
conversion mark stands alone
award 3 marks for answer provided some working shown - no working gets 2 marks
(2sf expected)

21 (a) Draws appropriate triangle on graph or other mark on graph at ~ 118

Change of approx 1 Me V per nucleon is multiplied by 235
B1
Multiplies by 1.6×10^{-13}
B1
Quotes their answer of approx 3.8×10^{-11} to more than 2 sf
B1
(b) $(2 \times 2.0135)-4.0026$ seen or $0.0244(u)$

C1
Multiplies u by 1.7×10^{-27}
C1
$E=m c^{2}$ seen or multiplies by $\left(3 \times 10^{8}\right)^{2}$
C1
$3.67 \times 10^{-12} \mathrm{~J}$
A1
(c) Multiplies 3.8×10^{-11} or their (b) by 6×10^{23}

M1
attempts to convert to energy per kg by multiplying by 1000 / 4 or 1000 / 235

M1
Compares $5.5 \times 10^{14}(\mathrm{~J})$ (Hydrogen) with $9.6 \times 10^{13}(\mathrm{~J})$ (Uranium) in some way eg by stating that the fusion reaction gives more energy (per kg) than the fission or very similar values - must be consequent on some correct analysis

A1
(d) Availability of fuel easier for fusion

B1
Doesn't produce radioactive fission products / no waste management problem

B1
2
[13]

22 (a) (i) $\quad \begin{aligned} & \text { (Mass change in } u=) \\ & \text { or (mass } \mathrm{Be}-7)-(\text { mass } \mathrm{He}-3)-(\text { mass } \mathrm{He}-4) \text { seen with numbers }\end{aligned}$
C1
$2.84 \times 10^{-30}(\mathrm{~kg})$
or Converts their mass to kg
Alternative 2nd mark:
Allow conversion of 1.71×10^{-3} (u) to MeV by
multiplying by 931 ($=1.59$ (MeV)) seen
C1
Substitution in $\mathrm{E}=\mathrm{mc}^{2} \quad$ condone their mass difference in this sub but must have correct value for $c^{2}\left(3 \times 10^{8}\right)^{2}$ or 9×10^{16}

Alternative 3rd mark:
Allow their MeV converted to joules ($\times 1.6 \times 10^{-13}$) seen
C1
$2.55 \times 10^{-13}(\mathrm{~J})$ to $2.6 \times 10^{-13}(\mathrm{~J})$
Alternative 4th mark:
Allow $2.5 \times 10^{-13}(\mathrm{~J})$ for this method
A1
4
(ii) Use of $E=h c / \lambda \quad$ ecf

C1
Correct substitution in rearranged equation with λ subject ecf
C1
$7.65 \times 10^{-13}(\mathrm{~m})$ to $7.8 \times 10^{-13}(\mathrm{~m})$ ecf
(b) (i) Use of E_{p} formula:

C1
Correct charges for the nuclei and correct powers of 10
C1
$2.6(3) \times 10^{-13} \mathrm{~J}$
(ii) Uses $K E=3 / 2 k T$: or halves $K E_{T}, K E=1.3 \times 10^{-13}(\mathrm{~J})$ seen ecf

C1
Correct substitution of data and makes T subject ecf Or uses KE_{T} value and divides T by 2

C1
$6.35 \times 10^{9}(\mathrm{~K})$ or $6.4 \times 10^{9}(\mathrm{~K})$ or $6.28 \times 10^{9}(\mathrm{~K})$ or 6.3×10^{9} (K) ecf

A1
(c) (i) Deuteron / deuterium / hydrogen-2

B1
Triton / tritium / hydrogen-3
B1
(ii) Electrical heating / electrical discharge / inducing a current in plasma / use of e-m radiation / using radio waves (causing charged particles to resonate)

B1
1

23 (a) (i) Attempt to use $\mathrm{KE}=3 / 2 \mathrm{kT}$ expect $0.75=3 / 2 \times 1.38 \times 10^{-23} T$

Or correct conversion to $\mathrm{J} 0.75 \times 1.6 \times 10^{-19}$
Correct equations $0.75 \times 1.6 \times 10^{-19}=3 / 21.38 \times 10^{-23} T$

C1
5800 K

A1
3
(ii) Attempt to use energy $=q Q / 4 \pi \varepsilon_{0} r$

C1
arrives at $1.9(2) \times 10^{-9}$ or uses (2×0.75) or twice candidate's energy from (i)

C1
$9.6 \times 10^{-10} \mathrm{~m}$
A1
3
(iii) For fusion nuclei have to touch or separation has to be nuclear diameter
energy has to be sufficient to overcome the nuclear repulsion (between protons)

B1
Close enough for nuclear strong force to act
B1
answer to 4 a (ii) is much greater that $10^{-15} \mathrm{~m}$
B1
or is greater that atomic radius
or is greater than the range of the strong force

3
(b) (i) Use of $p V=N k T$

C1
(Allow incorrect powers of 10 or rearrangement to make N subject)
$1 \times 10^{16} \times 1=N \times 1.38 \times 10^{-23} \times 1.5 \times 10^{6}$
C1
$4.8(3) \times 10^{32}$
(ii) 1.67×10^{-27} or 1.7×10^{-27} used

C1
$8.0-8.2 \times 10^{5}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ Allow ecf for N from (b)(i)
A1

2
(c) (i) Number of protons = moles of proton/mass of protons / Mass per second \times Avogadro constant used

B1
Or
No of protons = mass per second/proton mass
(allow if numerical equation seen with a subject)
4.18 or 4.19 or 4.21×10^{38} correct to at least 2 sf from correct working

B1
2
(ii) Attempt to use $E=m c^{2}$ with any mass and substitution for c

C1
Energy radiated $=5 \times 10^{9} \times \mathrm{c}^{2}$ energy radiated $4.5 \times 10^{26} \mathrm{~J}$

Number of helium nuclei formed $=1.05 \times 10^{38}$ (allow 1×10^{39})
B1
Approximate BE per nucleon from article $=4.28(4.5) \times 10^{-12} \mathrm{~J}$
B1
(Which is consistent)

