Question	Answer	Marks
1	Defining the problem	
	x is the independent variable and V is the dependent variable or vary x and measure V	1
	keep <u>current</u> (in the coil P) <u>constant</u>	1
	Methods of data collection	
	labelled diagram showing both coils supported	1
	two correct circuit diagrams for coil P <u>and</u> coil Q: power supply connected to one coil <u>and</u> voltmeter/c.r.o. connected to other coil	1
	method to determine x, e.g. use a ruler or drawn labelled horizontal ruler adjacent to coils with x indicated	1
	method to measure x from centre of coil P to centre of coil Q, e.g. measure width of (each) coil and divide by 2 and add to separation of coils	1
	Method of analysis	
	plots a graph of In V against x [or log V against x etc.]	1
	relationship valid if a straight line produced	1
	k = -gradient	1

Question		Answer N						
	Addi	tional detail including safety considerations	Max. 6					
	D1	do not touch hot coil/use gloves to position hot coil/heat-proof gloves to position coil						
	D2	use large current/number of turns/iron core (to produce large magnetic field/induced e.m.f.)						
	D3	use high frequency (to produce larger induced e.m.f.)						
	D4	use an a.c. power supply or signal generator (connected to coil P)						
	D5	keep the number of turns (on each coil) constant/frequency constant						
	D6	method described to check that current is constant, e.g. use an ammeter and variable resistor/variable power supply						
	D7	repeat measurements of x for different parts of the coil and average						
	D8	method to position ruler horizontally to measure <i>x</i> described e.g. use a spirit level or same height from bench at both ends						
	D9	method to keep coils parallel/co-axial e.g. adjust coil Q until maximum reading or use set square to ensure that coils are at right angles to the axis						
	D10	$\ln V = -kx + \ln V_0$						

2 Planning (15 marks)

Defining the problem (3 marks)	
P1 f is the independent variable and V is the dependent variable or vary f and measure V P2 Keep the current in coil X constant	[1] [1]
P3 Keep the number of turns on coil (Y)/area of coil Y constant	r.1
Do not credit reference to coil X only.	[1]
Methods of data collection (5 marks)	
M1 Two independent coils labelled X and Y.	[1]
M2 Alternating power supply/signal generator connected to coil X in a workable circuit.	[1]
MA Use c.r.e. to determine period/frequency or read off signal generator	[1]
M5 Method to keep <u>current</u> constant in coil X: adjust signal generator/use of rheostat.	[1]
Method of analysis (2 marks)	
A1 Plot a graph of V against f.	[1]
A2 Relationship valid if straight line through origin	[1]
Safety considerations (1 mark)	
S1 Reference to hot coils – switch off when not in use/use gloves/do not touch coils. Must re to hot coils.	əfer [1]
Additional detail (4 marks)	
D1/2/3/4 Relevant points might include	[4]
1. Use large current in coil X/large number of coils on coil Y (to increase emf).	
2. Use iron core (to increase emf).	
3. Detail on measuring emf e.g. height \times <i>y</i> -gain.	
4. Avoid other <u>alternating</u> magnetic fields.	
5. Detail on measuring requency from c.r.o. to determine period and hence <i>r</i> .	
7 Use insulated wire for coils	
8. Keep coil Y and coil X in the same relative positions.	
Do not allow vague computer methods	
Do not allow vagao computer methodo.	

[Total: 15]

3 Planning (15 marks)

Defining the problem (3 marks)

Ρ	<i>v</i> is the independent variable or vary <i>v</i> .	[1]				
Ρ	E is the dependent variable or measure E.	[1]				
Ρ	Keep the number of turns on the coil constant.	[1]				
Met	thods of data collection (5 marks)					
M1	Labelled diagram showing magnet falling vertically through coil.	[1]				
M2	Voltmeter or c.r.o. connected to the coil. Allow voltage sensor connected to datalogger.	[1]				
M3	Method to change speed e.g. change height.	[1]				
M4	Measurements to determine v . Use metre rule to measure distance magnet falls to <u>bottom</u> of the coil or metre rule/ruler to measure length of coil or ruler to measure lengt the magnet. [Allow timing instrument to measure the time of the fall from the start to bottom of the coil.]	the h of the [1]				
M5	M5 Method of determining v corresponding to appropriate distance e.g. $v = \sqrt{2gh}$ or $v=2h/t$ (for height method) or $v = L/t$ for length of magnet or coil <u>and</u> by stopwatch, timer or lightgate(s) connected to datalogger. [Allow $v = gt$ for timing fall to bottom of coil.] [1]					
Me t A F	t hod of analysis (2 marks) Plot a graph of <i>E</i> against <i>v</i> . [Allow lg <i>E</i> against lg <i>v</i>]	[1]				
A F [Relationship valid if <u>straight</u> line <u>through origin</u> . If lg-lg then straight line with gradient = (+)1 (ignore reference to <i>y</i> -intercept)]	[1]				
Saf S∤	ety considerations (1 mark) Keep away from falling magnet/use sand tray/cushion to catch magnet.	[1]				
Add D1/ Use 1 2 3 4 5 6 7	 ditional detail (4 marks) 2/3/4 Relevant points might include e coil with large number of turns/drop magnet from large heights/strong magnet Detailed use of datalogger/storage oscilloscope to determine maximum <i>E</i>; allow video camera including slow motion play back Use same magnet or magnet of same strength. Use of short magnet so that <i>v</i> is (nearly) constant Use short/thin coil so that <i>v</i> is (nearly) constant Use a non-metallic vertical guide/tube Method to support vertical coil or guide/tube Repeat experiment for each <i>v</i> and average 	[4]				

Do not allow vague computer methods.

[Total: 15]

Planning (15 marks) 4

Defining the problem (3 marks)

Ρ	<i>t</i> is the independent variable or vary <i>t</i> .	[1]
Ρ	V is the dependent variable or measure V.	[1]
Ρ	Keep the current (in the primary coil) constant.	[1]
Met	thods of data collection (5 marks)	
М	Diagram showing two independent labelled coils wound on iron cores.	[1]
Μ	AC power supply/signal generator connected to one coil.	[1]
Μ	Voltmeter/oscilloscope connected to other coil in a workable circuit.	[1]
Μ	Measure thickness of card using micrometer/vernier calipers/digital calipers.	[1]
М	Method to keep current constant – rheostat (or variable power supply) <u>and</u> ammeter correctly positioned in primary circuit and explained. Diagram and text required.	[1]
Me	thod of analysis (2 marks)	
М	Plot a graph of ln V against t (allow lg V against t) or ln V/V ₀ against t	[1]
Μ	σ = – gradient	[1]
Saf	ety considerations (1 mark)	
S	Precaution linked to hot coil(s) e.g. switch off when not in use/do not touch/wear gloves.	[1]

Additional detail (4 marks)

D	Relevant points might include	[4]
1	Use large current (in primary coil)/large number of turns <u>on the secondary</u> to achieve measurable <i>V</i> (allow more turns on secondary than primary).	
2 3 4 5	Keep frequency of power supply <u>constant</u> or keep the number of turns on each coil <u>constant</u> . Use laminated cores or use insulated wire for turns. Repeat measurements of <i>t</i> and average. <u>Measurement</u> of V_0 stating that no card is present.	<u>nt</u> .

- 6 Logarithmic equation: $\ln V = \ln V_0 \sigma t$ 7 Relationship is valid if the graph is a straight line with *y*-intercept = $\ln V_0$ 8 Discussion of compression of card / measure *t* when secured.

Do not allow vague computer methods.

[Total: 15]

Question	Answers	Additional Comments/Guidance	Mark				
01.1	period determined from at least 4 cycles, in range 3.8(0) to $5.0(0) \times 10^{-4} \text{ s } \checkmark$ frequency = $\frac{1}{\text{period}}$ in range 2300 ± 300 Hz \checkmark	accept 2 sf period, 2.3 × 10 ³ Hz					
01.2	peak to peak voltage = 6.8 divisions seen \checkmark rms voltage = 24 mV \checkmark	accept 24.0 or 24.1 mV	2				
01.3	flux linked with the search coil depends on the <u>area</u> of coil presented $_{1}\checkmark$ area is proportional to $d\cos\theta_{2}\checkmark$ [flux linked with the search coil depends on component of B perpendicular to the plane of the coil $_{1}\checkmark$ component is prop $B\cos\theta$, or suitable sketch] $_{2}\checkmark$	for $_{1}\checkmark$ accept $N\phi = BA$ for $_{2}\checkmark$ accept evidence in sketch, eg $d \qquad \qquad$	2				
01.4	six correctly calculated values of $\cos \theta$; accept all to 3 sf or all to 4 sf $_{1}\checkmark$ axes labelled, correct separator and unit with <i>l</i> , suitable scales $_{2}\checkmark$ plots correct to half a square (check at least one) $_{3}\checkmark$ ruled straight line extrapolated to meet either or both axes $_{4}\checkmark$ [for false plot allow $_{2}\checkmark$ and $_{4}\checkmark = 2$ MAX]	$\begin{array}{ c c c c c c }\hline \hline \theta /^{o} & l / cm & cos \ \hline \\ \hline 10 & 6.7 & 0.985 \\ \hline 34 & 5.6 & 0.829 \\ \hline 50 & 4.4 & 0.643 \\ \hline 60 & 3.4 & 0.500 \\ \hline 72 & 2.1 & 0.309 \\ \hline 81 & 1.1 & 0.156 \\ \hline \end{array}$	4				

01.5	direct proportionality is confirmed since graph is a straight line with zero [negligible] intercept ✓ [allow ecf for false plot]	must refer to intercept	1
01.6	idea of repositioning trace $_{1}\checkmark$ (to reposition the trace) so that an end of the line is aligned with [close to] a (horizontal) graduation $_{2}\checkmark$ (to reposition the trace) so that the line is aligned with the <u>central</u> (vertical) graduation on the screen $_{3}\checkmark$ associates <i>y</i> -shift and <i>x</i> -shift correctly with trace change $_{4}\checkmark$	accept clear marks on Fig 7 for all except 4 th point allow alignment with graduation (can be major or minor) of either end of the line for $_2\checkmark$	4
01.7	adjust <i>y</i> -voltage gain to a less sensitive [precise] setting [20 mV cm ⁻¹] \checkmark since <i>I</i> is increased beyond the range of the screen [vertical length of trace is too great] \checkmark because induced emf is proportional to rate of change of flux linkage [or quotes Faraday's Law] \checkmark and rate of change of flux linkage is doubled [same flux change in half the time] \checkmark	accept 'reduce Y gain' but reject 'use lower Y gain setting' no credit for suggestions that time-base setting should be changed answer without quantitative detail 2 MAX	3 MAX
01.8	evidence of suitable test employed to test whether curve shows exponential decrease, eg valid measurement of half life over more than one region $_1\checkmark$ states that trend is not exponential $_2\checkmark$	cannot earn $_{2}\checkmark$ without valid $_{1}\checkmark$	2

Question Number	Acceptable answers		Additional guidance	Mark
	 The relationship between ω and turning effect is (approximately) proportional 	(1)	Accept attempt to find a constant ratio and relevant conclusion	4
	 As speed increases rate of change/cut of magnetic flux increases 	(1)	Accept alternatives to flux	
	 this increases the induced current in the copper disc 	(1)	accept ref. to emf rather than current	
	 this will lead to an increase in force (on the copper disc as it is within a magnetic field/flux) 	(1)	Dependent on MP2 or 3	

Q3.

Question Number	Acceptable answers	Additional guidance	Mark
(i)	 change in magnetic flux (linkage as motor rotates) Or (copper disc is) cutting magnetic flux/field 	Accept flux linkage for magnetic flux	2
	 therefore there is an <u>induced</u> <u>induced</u> <u>e.m.f.</u> (according to Faraday's law) (1) 		
(ii)	• copper disc rotates in the same (1) direction		3
	 because it reduces the rate of magnetic flux change 	Accept induced current produces magnetic fields Or force on current in a magnetic field for MP2 Accept alternatives to flux as in (i)	
	 so as to oppose the change that produces it 		

Question	Acceptable Answers		Addition	al Guid	ance		Mark
Number							
*	This question assesses a	۱.					6
	student's ability to show a		IC	IC	Max	Max	
	coherent and logically structured		points	mark	linkage	final	
	answer with linkages and fully-				mark	mark	
	sustained reasoning.		-		available	-	
	Marks are awarded for indicative		6	4	2	6	
	content and for how the answer		5	3	2	5	
	is structured and shows lines of		4	3	1	4	
	reasoning.		3	2	1	3	
	The following table shows how		2	2	0	2	
	the marks should be awarded for		1	1	0	1	
	indicative content.		0	0	0	0	
		'					
	Indiantize content:						
	Maximum/Initial) succent is actual						
	 (Waximum minial) current is equal to battery emf divided by R 						
	Or current as switch closed						
	Or current as complete circuit						
	Or current due to battery						
	 Coil rotates 						
	• (movement of) coil "cuts/changes"						
	(magnetic) flux (linkage) / field						
	• Which induces an emf (according						
	to Faraday's law)						
	 Opposes original emf/current 						
	according to Lenz's law						
	Or current reduced as effect						
	opposes change						
	 The faster the coil rotates the 		ic3 nee	ds a linl	c to coil mo	ving	
	larger this (back) emf/effect the		1c4 dep	ends on	103		
	smaller the current						

Question Number	Acceptable Answer		Additional Guidance	Mark
(i)	 Use of F = BQv and F = EQ Algebra to show v = ^E/_B 	(1) (1)		2
(ii)	• Use of $W = QV$ and $E_k = \frac{1}{2}mv^2$ • Use of $v = \frac{E}{B}$ • $\frac{e}{m} = 1.7 \times 10^{11} \text{ C kg}^{-1}$	(1) (1) (1)	$\frac{\text{Example of calculation:}}{v = \frac{E}{B} = \frac{1.4 \times 10^4 \text{ V m}^{-1}}{1.5 \times 10^3 \text{ T}} \qquad \frac{e}{m} = \frac{v^2}{2v}$ $\frac{e}{m} = \frac{\left(9.33 \times 10^6 \text{ m s}^{-12}\right)}{2 \times 250 \text{ V}} = 1.74 \times 10^{11} \text{ C kg}^{-1}$	3

Q6.

Q5.

Question Number	Acceptable answers	Additional guidance			Mark	
*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning.	IC points	IC mark	Max linkage mark available	Max final mark	
	how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.	6	4	2	6	
		5	3	2	5	
		4	3	1	4	
		3	2	1	3	
	Generator:	2	2	0	2	
	 coil has to be rotated cuts magnetic flux Or rate of change of flux linkage induces an emf 	1	1	0	1	
		0	0	0	0	
	 Motor: current provided to coil Force on sides of coil that are perpendicular to magnetic field rotate coil as forces provide a moment 					
						6

Question Number	Accepta	ble Answer	Additional Guidance	Mark
*	Accepta This question assesses show a coherent and lo with linkage and fully- Marks are awarded for for how the answer is s lines of reasoning. The following table sho should be awarded for Number of indicative points seen in answer 6 5-4 3-2 1 0 Indicative content: As magnet A mov change of magneti The change in mag <u>an emf</u> in the coil The (induced) emf coils The current in the force to act on mag driving magnet B Because both mass same period/freque Resonance occurs	a student's ability to gical structured answer sustained reasoning. indicative content and tructured and shows ows how the marks indicative content. Number of marks awarded for indicative points 4 3 2 1 0 ves, its coil experiences a c flux (linkage) gnetic flux linkage induces causes a current in both second coil causes a gnet B, into oscillation s-spring systems have the ency (and magnet B oscillates	Additional Guidance The following table shows how the marks should be awarded for structure and lines of reasoning Number of marks awarded for structure and lines of reasoning Answer shows a coherent and logical structure with linkage and fully sustained lines of reasoning demonstrated throughout Answer is 1 partially structured with some linkages and lines of reasoning Answer is 0 Intege of reasoning Marks IC points 1 – 4 Three of these points could score one linkage mark	Mark
	with increasing an	ipinude)	IC points 5 & 6 could score one linkage mark	6

Question Number	Answer		Mark
*(a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Reference to changing/cutting of field/flux		
	Induced e.m.f. proportional to rate of change/cutting of flux (linkage) (accept equation)	(1)	
	Initial increase in e.m.f. as the magnet gets closer to the coil	(1)	
	Identifies region of negative gradient with magnet going through the coil	(1)	
	Indication that magnet's speed increases as it falls		
	Negative (max) value > positive (max) value (this mark is dependent on awarding marking point 5)	(1)	
	Time for second pulse shorter (this mark is dependent on awarding marking point 5)	(1)	
	The areas of the two parts of the graph will be the same (since $\ensuremath{N\phi}$ constant)	(1)	6
(b)	Two sequential pulses	(1)	
	Pulses same height (+/- 3 mm squares) and width (by eye) Pulses in opposite directions Region of zero e.m.f. in the middle		4
	Example (peaks could be in opposite directions)		

.

Question Number	Answer					Mark
(a)(i)	Max 2 Inconsistent number of significant figures or decimal places Or results recorded to different precision /resolution No repeat readings More readings needed up to 1.5 cm			(1) (1) (1)	2	
(a)(ii)(1)	Attempt to use <i>Vr</i> = constant Correctly finds two values of <i>Vr</i> from values in table and makes comment Or uses <i>Vr</i> value with another <i>r</i> or <i>V</i> to confirm corresponding value			(1)		
	and makes comment (1) <u>Example of calculation</u>				2	
	r/cm	VΔ	rV/cmV			
	1.0	0.725	0 725			
	1.5	0.483	0.725			
	2.0	0.363	0.726			
	2.5	0.29	0.725			
	3.0	0.242	0.726			
	3.5	0.21	0.735			
(a)(ii)(2)	The graph would be a straight line graph through the origin.(1)(accept a sketch of a straight line graph going through the origin graph)			1		
(b)(i)	An e.m.f. is (induced) when there is a changing (magnetic) field/flux. (1)			(1)		
	December the comment is constant them is a constant mean time					
	field. Or Because the current is constant there isn't a changing					
	magnetic field.					2
(h)(#)						
(0)(11)	Movement of either the coil or the wire				(1)	
	Use an alternating current/signal/supply/AC				(1)	
	Switch the current on/off Or change current e.g. use of variable					
	resistor (1)				3	
	Total for question				10	