Physics

Question	Maximum Mark	Mark Awarded
#1	8	
#2	12	
#3	15	
#4	16	
Total	51	

Disclaimer: The questions in this revision paper have all been taken from actual examinations that have taken place. Whilst the questions are the property of Eduqas, this revision paper was created using an online tool and Eduqas take no responsibility for the content within it.

7.	(a)	State two assumptions that must be made about the molecules of an ideal gas in order to derive the kinetic theory equation: [2]	
		$p = \frac{1}{3} \rho \overline{c^2}$	
	(b)	A cylinder of volume 5.0×10^{-2} m ³ contains 2.20 mol of argon gas (relative molecular mass, M_r = 39.9) at a pressure of 250 kPa.	
		(i) Calculate the rms speed of the argon molecules. [3]	
		(ii) I. State what would happen to the rms speed if the kelvin temperature of the gas in the cylinder were doubled, justifying your answer. [2]	•
		 Explain briefly whether or not your answer to (b) (ii) I. would still apply if some gas escaped from the cylinder while the temperature was being raised. [1] 	•

Question taken from Eduqas examination paper 842101, June 2018

(a)	and	lain, in ter why this p	ressure in	creases wit	h temperatu	re.		[6) QE
)	A cy	inder of v	olume 0.02	20 m ³ contai	ns 0.091 kg	of nitrogen g	jas (relative	molecular	r ma
)	A cy = 28 (i)			20 m ³ contai 9 × 10 ⁵ Pa. (ne molecule		of nitrogen g	jas (relative	molecular	
)						of nitrogen g	jas (relative	molecular	
)						of nitrogen g	jas (relative	molecular	
)						of nitrogen g	jas (relative	molecular	
)						of nitrogen g	jas (relative	molecular	
)						of nitrogen g	jas (relative	molecular	
)						of nitrogen g	jas (relative	molecular	
)						of nitrogen g	jas (relative	molecular	
)	(i)	the rms :		ne molecule		of nitrogen g	jas (relative	molecular	
)	(i)	the rms :	speed of th	ne molecule		of nitrogen g	jas (relative	molecular	
)	(i)	the rms :	speed of th	ne molecule		of nitrogen g	jas (relative	molecular	
<i>v</i>	(i)	the rms :	speed of th	ne molecule		of nitrogen g	jas (relative	molecular	
))	(i)	the rms :	speed of th	ne molecule		of nitrogen g	jas (relative	molecular	
))	(i)	the rms :	speed of th	ne molecule		of nitrogen g	jas (relative	molecular	r ma [
))	(i)	the rms :	speed of th	ne molecule		of nitrogen g	jas (relative i	molecular	

Question taken from Eduqas examination paper 842101, June 2017

 (a) Vadim uses a ruler to measure the sides of a copper block. He records the measurements as:

length = 50 ± 1 mm, breadth = 42 ± 1 mm, height = 36 ± 1 mm.

Using an electronic balance he measures the mass of the block as 670.85 ± 0.01 g.

Use Vadim's data to answer the following.

 Determine a value for the density of copper in kg m⁻³ and the absolute uncertainty in this value. [4]

 (ii) Determine the number of atoms per m³ of copper. The uncertainty is not required. The atomic mass of copper is 63.5 u.
(ii) Determine the number of atoms per m ³ of copper. The uncertainty is not required. The atomic mass of copper is 63.5 u. [2]
 (ii) Determine the number of atoms per m³ of copper. The uncertainty is not required. The atomic mass of copper is 63.5u. [2]
(ii) Determine the number of atoms per m ³ of copper. The uncertainty is not required. The atomic mass of copper is 63.5 u. [2]

(b)	(i)	 Calculate the number of molecules per m³ for a gas (assumed to be ideal) at a temperature of 15 °C and a pressure of 101 kPa. [3]
		II. When asked why there are far fewer gas molecules per m ³ than atoms per m ³ in the copper block, a student replies, "Each molecule of the gas takes up much more space." Discuss whether or not he is right. [2]
	(ii)	I. Two gases have molecular masses $m_{(1)}$ and $m_{(2)}$. Show clearly that when the gases are at the same temperature, the ratio of the rms speeds of their molecules is: [2]
		$\frac{c_{\rm rms(1)}}{c_{\rm rms(2)}} = \sqrt{\frac{m_{(2)}}{m_{(1)}}}$
	<i>(b)</i>	

 Calculate the percentage difference in the rms speeds of nitrogen and oxygen molecules in the same sample of air. Take the percentage difference to be defined as:

<u>ms speed for nitrogen – ms speed for oxygen</u> ×100% [Molecular mass for nitrogen = 28.0 u. Molecular mass for oxygen = 32.0 u.] [2]

Question taken from Eduqas examination paper 842101, June 2019

theonlinephysicstutor.com

(a)	(i)	Show that the mean kinetic energy of (monatomic) gas molecules at a tempera of 1500 K is approximately $3 \times 10^{-20} \text{ J}$.	
	(ii)	At 1500 K, sodium is a gas of monatomic molecules, each of mass 3.82×10^{-2} Calculate their rms speed.	
(b)	A so sodiu	dium molecule moving at 6.40 km s ⁻¹ to the East collides with an almost statio um molecule.	ona
		● <u>6.40 km s⁻¹</u>	
		3.82×10^{-26} kg 3.82×10^{-26} kg	
	(i)	Discuss whether a molecule with a speed of 6.40 km s ⁻¹ could be present at s instant in sodium gas at 1500 K and, if so, how it could have acquired this spe	e
	(ii)	After the collision one of the two molecules is moving to the East at 4.39km Calculate the speed and direction of motion of the other molecule.	ns
	(iii)	Determine whether or not the collision is elastic.	
	(iv)	Explain how Newton's 3 rd law applies to the collision.	
	(v)	Soon after the collision in <i>(b)</i> , one of the molecules gives out a photon of wavele 589 nm. Evaluate whether or not the momentum of the photon significantly at the molecule's velocity.	

Question taken from Eduqas examination paper 842101, November 2020