Marking Scheme

#1

0		Mandan a datati			Marks a	available		
Quest	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(a)		Horizontal line[s] with direction indicated from X to Y	1			1		
(b)	(i)	Substitution into $F = \frac{Ve}{d}$ shown: $\frac{1800 \times 1.6 \times 10^{-19}}{3.2 \times 10^{-3}}$ (1) $F = 9.0 \times 10^{-14}$ [N] (1)	1	1		2	2	
	(ii)	[Gain in E_k = Work done by field] Gain in E_k = 9.0 × 10 ⁻¹⁴ × 3.2 × 10 ⁻³ (1) (ecf on F) Gain in E_k = 2.88 × 10 ⁻¹⁶ J unit mark (1) Alternative: W = 1.6 × 10 ⁻¹⁹ × 1800 (1) W = 2.88 × 10 ⁻¹⁶ J unit mark (1) [Accept 1800 eV unit mark]	1	1		2	2	
	(iii)	$x = ut + \frac{1}{2}at^2$ and $u = 0$ (all possible by implication) (1) $a = \frac{F}{m}$ and substitution step: ecf on F e.g. $t^2 = \frac{2 \times 3.2 \times 10^{-3} \times 9.11 \times 10^{-31}}{9.0 \times 10^{-14}}$ (1) $t = 2.54 \times 10^{-10}$ [s] (1) Alternative: $\frac{1}{2}mv^2 = 2.88 \times 10^{-16}$ to calculate v (1) Application of $x = \frac{(u+v)t}{2}$ (1) ecf on v $t = 2.54 \times 10^{-10}$ [s] (1)	1	1 1		3	3	
(c)		F doubled (explained from $\frac{Ve}{\frac{1}{2}d}$) (1) $W = 2F \times \frac{d}{2}$ so no change (1) Accept: $W = QV$ and Q stated to be constant (1) so W remains unchanged (1)			2	2		
		Question total	4	4	2	10	7	0

#2

0	stion	Marking details	Marks available							
Que	Stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
(a)	(i)	Statement that length of error bar = largest reading (of U) – smallest reading (of U) [1] Accept reference from mean point to max or min if clearly stated. Data from one plot to show this e.g. for $6.8~\mu F$ capacitor, length of error bar calculated as = 14×10^4 – 13.2×10^4 [1] [award 1st mark by implication if 2^{nd} mark awarded]		2		2	1	2		
	(ii)	Length of horizontal error bar for one data point taken and divided by 2. e.g. for $6.8~\mu\text{F}$, $(0.65~\text{to}~0.70~\text{seen})$ [1] % tolerance calculated: 10% (Accept 6% to 12%) e.g. $0.68\times\frac{100}{6.8}$ [1]		2		2	1	2		
(b)	(i)	$U=\frac{1}{2}$ CV^2 used and V shown (by implication possibly) to = $(2 \times \text{gradient})^{1/2}$ [1] $V_{\text{max}} = 22.4$ [V] [1] $V_{\text{min}} = 18.0$ [V] [1]		3		3	3	3		
	(ii)	Mean $V = \frac{(22.4+18.0)}{2} = 20.2$ [V] (any sig fig.) [1] Uncertainty = $\frac{(22.4-18.0)}{2} = 2.2$ [V] (any sig fig) [1] or candidate answers to (i) used correctly (ecf) 2 or 3 sig figs seen for mean V and 1or 2 sig figs for uncertainty [1]		3		3	3	3		
(c)		Substitution into $V = V_0 e^{\frac{t}{CR}}$ [1] Algebra to show either $V = 8 \text{ V}$ or $V_0 = 20 \text{ V}$ or $t = 35 \text{ s}$ or CR value [1] Relevant statement: e.g. value confirmed [1]			3	3	2	3		
		Question total	0	10	3	13	10	13		

Question Marking details		Marks available							
'	Juest	ion	Marking details	A01	AO2	AO3	Total	Maths	Prac
3	(a)		Plates of X are closer together (than plates of Y) or vice-versa [1] X contains dielectric (or space between plates of X contains material of higher permittivity) or vice-versa [1] Accept: Overlap of plates in X > overlap of plates in Y	2			2		
	(b)	(i)	Series combination: Substitution $-\frac{1}{C_{\text{series}}} = \frac{1}{20 [\mu\text{F}]} + \frac{1}{30 [\mu\text{F}]} \text{ or } C_{\text{series}} = \frac{20 \times 30}{20 + 30} [\mu\text{F}] [1]$ $C_{\text{series}} = 12 \mu[\text{F}] [1]$ Total capacitance = $52 \mu[\text{F}] [1]$	1	1		3	2	
		(ii)	Idea that Q is same on both capacitors, either stated or e.g. $C \propto \frac{1}{V}$ [1] 20 [x 10-6] x pd across C_2 = 30 [x 10-6] x pd across C_3 [1] [Both marks can be awarded if this seen]	1	1		2	1	
		(iii)	40 [V]		1		1	1	
		(iv)	C_1 stores the greatest charge with explanation: Largest capacitance and greatest pd across it [1] $Q = 40 \times 10^{-6} \times 100 = 0.004$ [C] [1]	1	1		2	1	
	(c)		Substitution: $E = \frac{1}{2} \times 1.6 \times 10^{-3} \times (300)^{2} [1]$ $E = 72 [J] [1]$ Energy gained by Al block = $mc\Delta\theta$ or substitution seen i.e. $E = 0.1 \times 910 \times 0.6 [1]$ $E = 54.6 [J] [1]$ Efficiency (%) = $\frac{54.6 \text{ecf} \times 100}{72 \text{ecf}} = 75.8 \%$ Not justified / criteria not met [1]			5	5	3	
			Question 3 total	6	4	5	15	8	0

Question	Marking dataile		Marks av	/ailable			
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
6 (a)	capacitance = $\frac{\text{charge (on either plate)}}{\text{pd (between the plates)}}$ Accept charge per unit pd / voltage [between plates] (1) Accept $C = \frac{Q}{V}$ if Q and V defined	1			1		
(b) (i)	Q = -75 nC, R = $+75$ nC, S = -75 nC All numerical values stated as 75 [nC] (1) Correct signs and unit, i.e. nC (1) One of: (1) • Capacitors in series carry equal charges when joined to common pd • Conservation of charge applies for series circuit [hence if $+75$ μ C moves from A to plate P, the same moves from Q \rightarrow R etc] • Opposite charge to P (accept R), since connected to negative potential [Accept: battery transfers electrons from P to Q]	3			3		
(ii)	Total capacitance = 7.5 nF (1) $V = \frac{75 \times 10^{-9}}{7.5 \times 10^{-9}} \text{ (ecf on total } C\text{)}$ $V = 10 \text{ V (1)}$ Alternative: Application and substitution into $\frac{Q}{C_1} + \frac{Q}{C_2}$ i.e. $\frac{75 \times 10^{-9}}{30 \times 10^{-9}} + \frac{75 \times 10^{-9}}{10 \times 10^{-9}} \text{ (1)}$ $V = 10 \text{ V (1)}$		2		2	2	
(iii)	Either: Q same on both capacitors (1) $\frac{1}{2} \frac{Q^2}{C}$ is bigger on smaller capacitor (1) (Award 2 marks for correct numerical analysis) Or: $V \propto \frac{1}{C}$ so V bigger across smaller capacitor (1) $\frac{V}{2} CV^2$ bigger across smaller capacitor (V^2 factor) (1) (Award 2 marks for correct numerical analysis) Or Q same on both capacitors and $V \propto \frac{1}{C}$ so V bigger across smaller capacitor (1) $\frac{V}{2} QV$ is bigger on smaller capacitor (1) (Award 2 marks for correct numerical analysis			2	2		
(c)	New $C = 0.47 \text{pF}$ (1) New $d = 3.0 \times 10^{-3} \text{m}$ (1) $\Delta d = 5.2 \times 10^{-3} - 3.0 \times 10^{-3} = 2.2 \times 10^{-3} \text{m}$ (1) (ecf from new d) Application of $F = k\Delta d$ ecf $k = 91 \text{Nm}^{-1}$ so spring of $k = 90 \text{Nm}^{-1}$ suitable [conclusion consistent with value of F](1) Alternative 'Trial and Error': Application of $x = \frac{F}{k}$ for each spring constant, showing that for: $k = 120 \text{Nm}^{-1}$, $x = 1.67 \times 10^{-3} \text{m}$ $k = 120 \text{Nm}^{-1}$, $x = 1.33 \times 10^{-3} \text{m}$ $k = 90 \text{Nm}^{-1}$, $x = 2.22 \times 10^{-3} \text{m}$ (All required for 1) New $C = 0.47 \text{pF}$ (1) Application of $C = \frac{\mathcal{E}_0 A}{d}$ for each value of x above to show that, for $x = 2.22 \times 10^{-3} \text{m}$, $C = 0.475 \times 10^{-12} \text{F}$, so $k = 90 \text{Nm}^{-1}$ suitable. (1)			4	4	3	
	Question 6 total	4	2	6	12	5	0

Question		Mayking dataile		Marks a	vailable			1
Question	l	Marking details	AO1 AO2	AO2 AO3 Total			Prac	
(a)		Electrons (or negative charges) are deposited on Z [and this plate becomes negatively charged] (1) Electrons (or negative charges) are removed from Y [and this plate becomes positively charged] (1)		2		2		2
(b)	(i)	Initial pd across capacitor = pd of cell (by implication) and correct application to show <i>R</i> or <i>I</i>		1		1		1
	(ii)	Reference to resolution of voltmeter (1) which is too small to be plotted (1) (on given scale)			2	2		2
	(iii)	Error bars [are ±1 s]		1		1		1
	(iv)	Appropriate (corresponding) values from graph e.g. $V_0 = 6 \lor, V = 4 \lor, t = 13 \mathrm{s} (1)$ Correct algebra $[V = V_0 e^{\frac{t}{CR}}]$ to show $t = 32 [\mathrm{s}] (1)$ Alternative: Time constant = 0.37 V_0 stated or implied or $V = 2.2 [\mathrm{g}] \lor (1)$ Time constant = 32 $[\mathrm{s}] (1)$ Alternative: $V_0 = 0.69 RC (1)$ $V_0 = 0.69 RC (1)$ Alternative: Initial gradient = $-\frac{V_0}{RC} = -\frac{6}{33} (\text{tangent at } t = 0 \text{intercepts}$ time axis at $t = 33 \mathrm{s} (1)$ $V_0 = \frac{6 \mathrm{x} 33}{6} = 33 [\mathrm{s}] (1)$		2		2	2	2
	(v)	Application of time constant = CR (1) $C = \frac{32}{68000} = 471\mu\text{F} (\text{ecf} \text{ in } t \text{ or candidate value used}) (1)$ % uncertainty calculated as $3\% + 3.2\% = 6.2\% (1)$ Absolute uncertainty = $\pm 30\mu\text{F}$ So: $470 \pm 30\mu\text{F} (\text{or } 0.47 \pm 0.03\text{mF}) (1)$ consistency of sig figs	1	1 1 1		4	4	4
	V-7	Correct substitution into $V = V_0 e^{\frac{1}{CR}}$ (1) V shown = 1.1 [V] (1) Reference to continued graph line going through this point (1)			3	3	2	3
		Question total	1	9	5	15	8	15