Marking Scheme

#1

-	Questio	Marking details	Marks available							
	guesno		A01	A02	AO3	Total	Maths	Prac		
10	(a)	Flux linkage, $N\Phi = NBA \cos\theta$ [1] All values substituted correctly e.g. $270 \times 0.042 \times 0.114 \cos 5^{\circ}$ [1]	2			2	1			
	(b)	Change in flux is zero or flux is constant Accept no lines being cut		1		1				
	(c)	$\frac{0.22}{5.8}$ or similar seen [1] Correct answer = 37.9 [V] [1]		2		2	1			
		Question 10 total	2	3	0	5	2	0		

#2

Question		Marking details	Marks available					
G	uestion	Marking details	A01	AO2	AO3	Total	Maths	Prac
10	(a)	Flux changes in ring as it approaches [or recedes from] magnet (1) Emf induced (1) [or by implication by next marking point] Current induced (complete circuit) (1) [Motor effect force] opposes motion or energy lost or Lenz's law stated(1)		4		4		
	(b)	Nothing [or equiv](1) Always opposes motion (Lenz) / field in opposite direction / current in opposite [not: the force opposite] (1)		2		2		
	(c)	Length = $2\pi r$ used (1) [0.157 m] $R = \frac{1.59 \times 10^8 \times 2\pi \times 0.025}{2.4 \times 10^5} \text{ seen}$ (or $1.04 \times 10^{-4} [\Omega] \text{ seen}$) (1)	1	1		2	1	
	(d)	Ohm's law used (1) $ Emf = \frac{BNA}{t} \text{ i.e. Faraday's used (1) [= 0.55 mV]} $ [NB c.s.a of wire used \rightarrow no credit and no ecf] $ Answer, \ \frac{B}{t} = 0.29 \ T \ s^{-1} \ (or \ 0.28 \ depending \ on \ rounding)(1) $	1	1		3	2	
		Question 10 total	2	9	0	11	3	0

#3

Question		Marking details		Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
(a)	(i)	Answer = 57.3 m[T]	1			1	1			
	(ii)	Shape correct (minimum 3 lines) (1) Direction correct (no contradicting arrows) (1)	2			2				
	(iii)	Iron core	1			1				
(b)	(i)	Change in flux (1) Complete circuit OR low resistance (1) Large rate of change of flux OR large flux & small t (1)		3		3				
	(ii)	Use FRHR OR use FLHR on electrons OR RH grip (1) on bottom part OR in bottom part OR induced field opposes (1)	1	1		2				
	(iii)	Faraday's law used e.g. 2.18 V OR $\frac{BA}{t}$ seen (1)	1							
		$I = \frac{V}{R} \text{ used (1)}$	1			3	2			
		Answer = 323 [A] (1)		1						
	(iv)	Use of <i>F</i> = <i>BIL</i> ecf (1) Answer = 205 [N] (1) Opposes motion (1)			3	3	2			
		Question total	7	5	3	15	5	0		

#4

Question	Marking details	Marks available						
Question		AO1	AO2	AO3	Total	Maths	Prac	
(a) (i)	reference to [Fleming's] RH rule (1) don't accept RH grip rule Current can flow or circuit is complete (1)	1	1		2			
(ii)	Vertical component is perpendicular to the area swept or other components are not cut Accept flux due to horizontal field is zero or motion is in plane / parallel to horizontal field Don't accept current in the field		1		1			
(b)	Induced emf = $\frac{d}{dt}(BA)$ with or without $N(\text{accept } \frac{BA}{t})$ (1) $\frac{d}{dt}(A) = \frac{ldx}{dt} \text{ accept } \frac{A}{t} = \frac{lx}{t} \text{ or } \frac{A}{t} = lv \text{ (1)}$	1	1					
	$\frac{\mathrm{d}t}{I} = \frac{V}{R} \text{ and reasonable algebra (1)}$		1		3	3		
(c) (i)	Good method employed e.g. calculating $3 \times \text{ratio} \frac{v}{I}$, calculating B 3 times, or I is proportional to v etc. (1) Correct calculations e.g. $0.5, 0.5, 0.55, 0.53 / I$ is roughly $2v$ (1) B , ℓ and R are constants or equivalent e.g. $\frac{Bl}{R}$ is constant (1) Ok within uncertainties (1)			4	4	3	4	
(ii)	80 m s ⁻¹ and 150 μ A used accept mean points if 80 m s ⁻¹ and 150 μ A used for uncertainty (1) Rearrangement $B = \frac{RI}{l\nu}$ (1) Answer = 57.6 μ [T] (1) 1% and 7% used (1.25% and 6.7% ok) ecf accept first principles (1) Percentages added (8%) ecf (1) $B = (58 \pm 5) \mu$ T ecf accept (57.6 \pm 4.6) μ T unit mark and with consistent sig figs allow a max of 2 sig figs for the uncertainty (1)		1 1 1	1 1 1	6	6	6	
	Question total	2	7	7	16	12	10	