Mark Scheme Q1. | Question
Number | Acceptable Answers | Additional guidance | Mark | |--------------------|--|---------------------|------| | | The resolution would be the same but the distance measured is greater Or The uncertainty would be the same but is divided by a greater length (1) | | 1 | Q2. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|------| | rumber | • calculates $\theta = 24^{\circ}$ and $d = 3.3 \times 10^{-6}$ m
• use of $n\lambda = dsin\theta$
• $6.7 - 6.8 \times 10^{-7}$ m | Example of calculation
$\tan \theta = \frac{0.89 \text{ m}}{2.0 \text{ m}} \theta = 24^{\circ}$
$d = \frac{1 \times 10^{-3}}{300} = 3.3 \times 10^{-6} \text{ m}$
$\lambda = \frac{3.3 \times 10^{-6} \text{ m} \times \sin 24}{2} = 678 \text{ nm}$ | 3 | Q3. | Question
Number | | Acceptable answers | | Additional guidance | Mark | |--------------------|---|--|-----|---------------------|------| | | • | measure distance from grating to screen $\it l$ and from centre to dot $\it x$ | (1) | | | | | • | use $\tan \theta = x / l$ to determine θ | (1) | | 2 | ## Q4. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|--------------------------|---|------| | | Axes with labels scales plots line of best fit | (1)
(1)
(1)
(1) | MP2: scales only in 1,2,4,5 and must cover at least half of paper | | | | | | MP3: a 2 mm square tolerance, check all points | 4 | ## Q5. | Question
Number | Acceptable Answers | Additional guidance | Mark | |--------------------|---|---|------| | | • Use of $\tan \theta = \frac{x}{D}$ (1)
• Use of $d = 1/300$
• Use of $n\lambda = d \sin \theta$ (1)
• $\lambda = 530$ (nm) with conclusion green (1) | Example of Calculation
$d = 1/(300 \times 10^{3} \text{m}^{-1}) = 3.33$
$\times 10^{-6} \text{ m}$
$\theta = \tan^{-1} \frac{1.35}{4.0} = 18.65^{\circ}$
$\lambda = \frac{3.33 \times 10^{-6} \text{ m} \times \sin 18.65^{\circ}}{2} = 5.32 \times 10^{-7} \text{m} = 532 \text{ nm}$
Green | 4 | Q6. | Question
Number | Acceptable Answer Additional Guidance | Mark | |--------------------|--|------| | (a) | • use of $n\lambda = d\sin\theta$ (1) Example calculation $d = 650 \times 10^{-9} \text{ m/sin } 19$ | .90 | | | • use of $1/d$ (1) = 1.9×10^{-6} m
$1/1.9 \times 10^{-6}$ m = 520 00 | 0 | | | • 520 000 lines per (1) lines per metre metre | (3) | | Question
Number | Acceptable Answei | r | Additional Guidance | Mark | |--------------------|--|-----|---------------------|------| | (b) | measure angle for first
order on either side
and divide by 2 | (1) | | | | | if there is a zero error it will be eliminated OR | (1) | | | | | measure a larger angle | (1) | | | | | this will reduce the
percentage uncertainty | (1) | | (2) | # Q7. | Question
Number | Acceptable Answers | | Additional guidance | Mark | |--------------------|--|--------------------------|---|------| | (i) | Any one Monochromatic or small range of wavelength / frequencies Coherent Little divergence of wave over a distance Produces plane wavefronts | (1) | Evample of Calculation | 1 | | (ii) | d = 0.005 mm or use of d = 1 = 200 mm⁻¹ Use of tan to find θ Use of nλ=dsinθ with n = 3 λ = 5.4 × 10⁻⁷ (m) Concludes that the laser light is green Or conclusion consistent with their value of λ | (1)
(1)
(1)
(1) | Example of Calculation $d = \frac{1}{200 \text{ mm}^{-1}} = 0.005 \text{ mm}$ $\theta = \tan^{-1} \left(\frac{1.02 \text{ m}}{3.0 \text{ m}}\right) = 18.8^{\circ}$ $\lambda = \frac{(5 \times 10^{-6} \text{m}) \times \sin 18.8^{\circ}}{3} = 5.37 \times 10^{-7} \text{m}$ so light is green | 5 | | Question
Number | Acceptable Answer | | Additional Guidance | Mark | |--------------------|---|-------------------|--|------| | (i) | set up diffraction grating at right angles to light from laser Or set up grating parallel to screen measure the distance between the diffraction grating and the screen measure the distance between 1st order images on the screen | (1)
(1)
(1) | An annotated diagram could score
these marks MP3 accept between other correct
specified orders. | 3 | | Question
Number | Acceptable Answer | Additional Guidance | Mark | |--------------------|--|--|--------| | (ii) | use of d sin θ = nλ Calculation of one of the diffraction angles (for any n) Attempt to calculate a difference in the angles | $\sin \theta_1 = \frac{656.2 \times 10^{-9} \mathrm{m}}{2.2 \times 10^{-6} \mathrm{m}}$ | | | | Or statement that the two angles are very similar • So (accurate) measurement would be very difficult Or the difference in wavelength could not be determined with this grating | $\therefore \theta_1 = 17.354^{\circ}$ $\sin \theta_2 = \frac{656.0 \times 10^{-9} \mathrm{m}}{2.2 \times 10^{-6} \mathrm{m}}$ $\therefore \theta_1 = 17.348^{\circ}$ $\therefore \Delta \theta = 17.354^{\circ} - 17.348^{\circ} = 0.6$ | 006° 4 | ### Q9. | Question
Number | | Acceptable answers | | Additional guidance | Mark | |--------------------|---|--|-----|---------------------|------| | | • | measure distance from grating to screen $\it l$ and from centre to dot $\it x$ | (1) | | | | | • | use $\tan \theta = x / l$ to determine θ | (1) | | 2 | | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|--|--------------------------|---|------| | | Axes with labels scales plots line of best fit | (1)
(1)
(1)
(1) | MP2: scales only in 1,2,4,5 and must cover at least half of paper | | | | | | MP3: a 2 mm square tolerance, check all points | 4 | | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|--|-----|---|------| | | calculation of a gradient | (1) | Example of calculation | | | | use gradient = d/λ | (1) | gradient = $\frac{4.0}{0.76}$ = 5.26 | | | | • use d = 0.001 / 300 | (1) | | | | | • wavelength = 6.3×10^{-7} m | (1) | $\frac{0.001}{300} = 5.26 \times \lambda$ | | | | | | wavelength = 6.3×10^{-7} m | 4 | Q10. | Question
Number | Acceptable Answer | Additional
Guidance | Mark | |--------------------|---|------------------------|------| | (a) | laser light (1) should not be aimed directly into the eye | | | | | as concentrated (1) beam can cause damage to the retina | | (2) | | Question
Number | Acceptable Answer | Additional Guidance | | Mark | |--------------------|--|---------------------|--|------| | (b)(i) | EITHER all x values should be recorded to the same number of decimal places, so x₂ and x₄ are incorrectly recorded | readings | ward repeat
, not appropriate
xperiment | (1) | | (b)(ii) | • use of $\tan \theta = \frac{x}{D}$ [$\theta = 22.9$] • $\sin \theta = 0.390$ | 9°] (1) (1) | Example of calculation:
$\tan \theta = \frac{0.741}{1.75} = 0.423$ $\therefore \theta = 22.9^{\circ}$ $\therefore \sin \theta = 0.3899$ | (2) | | (b)(iii) | point plotted correctly <u>and</u> best
straight line drawn through points | (1) | | (1) | | Question
Number | Acceptable Answer | | Additional Guidance | Mark | | |--------------------|-------------------|---|---------------------|---|-----| | (b)(iv) | • | $\sin \theta = \frac{\mathbf{n}\lambda}{d}$, so gradient = $\frac{\lambda}{d}$ | (1) | Example of calculation:
$d = \frac{1}{3 \times 10^5 \text{ m}^{-1}} = 3.33 \times 10^{-6} \text{ m}$ | | | | • | gradient = 0.194 | (1) | 3×10 m | | | | • | use of d = 1/number of
lines per mm | (1) | $\lambda = 3.33 \times 10^{-6} \mathrm{m} \times 0.194$
= $6.47 \times 10^{-7} \mathrm{m}$ | (5) | | | • | $d = 3.33 \times 10^{-6} (m)$ | (1) | | (3) | | | • | $\lambda = 6.5 \times 10^{-7} \mathrm{m}$ | (1) | | | | Question | | | | | |----------|---|-----|---|------| | Number | Acceptable Answer | | Additional Guidance | Mark | | (c) | An answer that makes reference to two of the following pairs: use a Vernier scale to record x | (1) | Do not award
repeat readings, not
appropriate in this
experiment | | | | so that data to the
nearest 0.1 cm could
be obtained to reduce
the percentage
uncertainty | (1) | | | | | use a larger grating to
screen distance | (1) | | | | | so that all x values would be greater to reduce the percentage uncertainty | (1) | | | | | measure from nth
order on one side to
nth order on the other
side | (1) | | | | | so that the distance
measured is larger
hence reducing the
percentage
uncertainty in x | (1) | | | | | use a grating with
more lines per mm | (1) | | | | | so that values of x will
be greater to reduce
the percentage
uncertainty | (1) | | (4) |