theonlinephysicstutor.com

Name: .	
Electromagnetic Radiation	
Mark Scheme	
Date:	
Time:	
Total marks available:	
Total marks achieved:	

Mark Scheme

Q1.

Question Number	Answer	Additional guidance	Mark
	an explanation linking:		(3)
	(the colours have) different wavelengths (1) different wavelengths / colours travel at different speeds (1)	allow the word frequencies for wavelengths	AO 2 1
	so refract by different amounts (1)	for refract allow bend/change direction/follow different path	

Q2.

Question Number	Answer	Additional guidance	Mark
	a description to include:		(3)
	• longitudinal – (vibrations) parallel to (direction of travel) (1)	back and forth (oscillations)/ compressions or rarefactions	AO 1 1
	• transverse – (vibrations) at right angles to (direction of travel) (1)	up and down (oscillations)	
	(connection between) direction of travel with (direction of) vibrations (1)		

Q3.

Question Number	Answer		Acceptable answers	Mark
(i)	В			(1)
	either real or virtual	either magnified or diminished		

Question Number	Answer	Acceptable answers	Mark
(ii)	A description including:-		(2)
	Effect of change in shape (1) AND	greater refraction/ more bending (of light) greater curvature / fatter / more curved/ thicker lens shorter focal length / shorter f	
	Gives greater/ larger power (1)	Or reverse argument	
	The second mark is dependent on the first	Credit clear labelled diagrams that show this difference.	

Q4.

Question Number	Answer	Mark
(i)	The only correct answer is B A is not correct because it has a smaller power than B C is not correct because it is a diverging lens D is not correct because it is a diverging lens	(1)

Question Number	Answer	Additional guidance	Mark
(ii)	rearrangement and substitution (1) $\frac{1}{5}$ unit conversion and evaluation (1)		(2)
	20 (cm)	award full marks for the correct answer without working accept 0.2 for one mark only	

Q5.

Question Number	Answer	Additional guidance	Mark
	a description to include any four from:	critical angle	(4)
	shine a ray (of light) into the block (1)	move ray box round ray box	
	into block through the curved face along a radius (1)	credit marking points in the diagram if they are clear	
	{change angle / move ray(box)} until {the angle of refraction is 90°/ TIR just occurs} (1)		
	measure angle of incidence {when refracted angle is 90° / when TIR	allow 'calculate' for 'measure'	
	just occurs} (1)	plot angle i against angle r	
	repeat measurement of critical angle (1)	if light only enters block at straight edge, maximum 1 mark (for MP1)	

Q6.

Qu	estion	Answer	Acceptable answers	Mark
Nu	mber			
	(a)	B 20 cm		(1)

Question Number	Answer	Acceptable answers	Mark
(b) (i)	Substitution 12/(14-12) (1) Evaluation	Award full marks for correct with no working	(2)
	6.0 (1)	Ignore any units	

Question Number	Answer	Acceptable answers	Mark
(b) (ii)	-12	Negative sign essential	(1)

Question Number	Answer	Acceptable answers	Mark
(b) (iii)	Suggestion to include one of: Shows whether it is real or virtual (1)	Allow shows whether it is inverted or upright Allow shows which side of lens image is formed	(1)
	A positive sign for magnification indicates a {real image/inverted image/opposite side of lens to object} (1)	A negative sign for magnification indicates a {virtual image/upright image/same side of lens as object} IGNORE simple reference to magnification	

Q7.

Question Number	Answer	Mark
(i)	D refraction is the only correct answer	(1)
	A 'deflection' is an incorrect distracting description	AO 1 1
	B 'incidence' is incorrect, that would be angle X	
	C 'reflection' is incorrect, no reflection being shown in the diagram	

Question Number	Answer	Additional guidance	Mark
(ii)	any pair of coordinates selected from the line (1)	e.g. 20 and (13 or 14) or 10 and (6 or 7) ignore any units given	(2) AO 2 1
	in range $\rightarrow 0.6(0)$ to $0.7(0)$ (1)	award full marks for a correct answer without working	

Question Number	Answer	Additional guidance	Mark
(iii)	an explanation linking:		(3)
	repeat (1)	allow 'more measurements' / 'repeat experiment' / collect more data	AO 3 3a
	different angles / more values of X (1)		
	for larger angles / values of X (1)	> 20°	

Q8.

Question	Answer	Acceptable answers	Mark
Number			
(a)(i)	D both real and virtual images		(1)

Question Number	Answer	Acceptable answers	Mark	
(a)(ii)	A 8.3 dioptre		(1)	

Question Number	Answer	Acceptable answers	Mark
(a)(iii)	Diagram showing Convex lens, wider at the centre and more curved (1) shorter focal length identifiable (1)	Lens can be redrawn anywhere on the diagram	(2)

Question Number	Answer		Acceptable answers	Mark
Number (b)	substitution $1/12 = 1/8.5 + 1/v$ transposition $(1/v) = 1/12 - 1/8.5$	(1)	substitution and transposition in any order	(4)
	evaluation (1/v) = -0.034 Inversion v = -29(cm)	(1)	0.034,-7/204,7/204, 0.03,-0.03 (3) Ignore signs until final value of v is given. -29.1(cm) -29.14(cm) Allow answers that can be rounded down to -29(cm) full marks for the correct numerical answer with no working (-)204/7 or 29(cm) with no working gains 3 marks	

(Total marks for question = 8 marks)

Q9.

Question Number	Answer	Acceptable answers	Mark
(a)	B glass air		(1)

Question Number	Answer	Acceptable answers	Mark
(b)(i)	substitution: (1) $3.2 \times 10^{7} = power/6.3 \times 10^{-6}$ transposition (1)	substitution and transposition in any order	(3)
	(power) = $3.2 \times 10^7 \times 6.3 \times 10^{-6}$ evaluation: (1) 200 (W)	ignore powers of 10 until evaluation 202(W) or 201.6(W) or 201(W) full marks for the correct	
		numerical answer without working	

Question Number	Answer	Acceptable answers	Mark
(b)(ii)	An explanation linking: EITHER • no light / energy is lost (1) OR • no light is refracted (out) (1) WITH • (because) idea of (total) internal reflection (1)	Ignore references to power No light / energy escapes All <u>light</u> stays in (the fibre) TIR Accept "All light is internally reflected" for 2 marks	(2)

Question Number	Answer	Acceptable answers	Mark
(c)	substitute and evaluate (sin c) = 1/1.7		(2)
	(sin c) = 0.59 (1)	0.588, 0.58, 0.6	
	from graph or calculation		
	c = any value between 34° and 38° (1)	full marks for the correct numerical answer without working	

(Total marks for question = 8 marks)

Q10.

	Answer	Acceptable answers	Mark
(a)(i)	An explanation linking: Angle (of incidence) in glass (1) greater than critical angle / 42° (1)		(2)
		Angle in air cannot be greater than 90° for 1 mark	
		Glass has a higher refractive index than air for 1 mark	
(a)(ii)	Normal Air	accept for 1 mark	
	Angle of Incidence P Angle of Incidence Ang	angle i in air <u>and</u> angle r in glass/ <u>both</u>	(2)
		angles measured from normal	
(a)(iii)	☑C speed decreases		
			(1)
(b)(i)	An explanation linking any three of th following:	eAccept suitable labelling on a Diagram	(3)
	(Optical fibres) bend (1) some fibres carry light to the inside of	=	
FO DI '		(a a a la a a la a a a /Tla a O a l'a a F	.

	the patient (1) some fibres transmit the reflected light (1) light passes up/down fibres by TIR (1) light is reflected inside the patient (1) image is analysed by computer (1)	lmage projected on a screen	
(b)(ii)	Either Breaks/blasts/smashes (1) Kidney stones (1)		(2)
	to help repair muscle tissue (1) or Use of gel (1)	bruising/clots increases blood flow Allow (1) mark for suitable diagnosis e.g. prenatal scan	

Q11.

Question Number	Answer	Acceptable answers	Mark
(a)	• below 20 Hz (1)	infrasound	
	above {20 000 Hz / 20 kHz} (1)	ultrasound	
	If Hz or kHz is not seen	(in either order)	
	somewhere, the maximum score is 1 mark.	(no units needed for the names)	(2)

Question Number	Answer	Acceptable answers	Mark
(b)(i)	C it is a longitudinal wave travelling faster than an S wave		(1)

Question Number	Answer	Acceptable answers	Mark
(b)(ii)	Explanation linking the following:- MP1 refraction /changing speed (1) MP2 (due to) changing	ignore changes in direction/ bending (in this case) rock becomes {more / less} {dense / compact}	
	{material/medium /rock type / density} (1)		(2)

Question Number	Answer	Acceptable answers	Mark
(b)(iii)	Explanation linking the following:-	Check diagram for creditworthy points.	
	MP1 (S / transverse waves) they cannot travel through liquid (1)	they can only travel through solids	
	MP2 Earth's core is (at least part) {liquid/molten} (1)	may be stated in part (ii)	
	MP3 (so) (S waves) they cannot travel through core (to other side of Earth) (1)	(S / transverse waves) they cannot be detected on opposite side of the Earth to (collision site / earthquake)	(3)

Question	Answer	Acceptable answers	Mark
Number			
(b)(iv)	Suggestion to include any two from:		
	MP1 idea that {kinetic energy/force/ momentum} of meteor might cause the earthquake (1)	(meteor) it has large amount of kinetic energy	
	MP2 (earthquakes happen where) plates slide {past/over/under/away	(earthquakes happen where) plates collide rub/move for slide	
	from/against} each other (1)	(earthquakes happen when) large amount of energy released in / near Earth's surface	
		(plates) jolt/jerk	
	MP3 (plates move) suddenly	vibrations passing through the	
	MP4 (meteor collision) starts seismic waves /P/S (1)	Earth condone earthquake waves	
		{kinetic energy/force /momentum} of meteor can cause the plates to slide past each other = 2	(2)

Q12.

Question	Answer	Acceptable answers	Mark
Number		Accept symbols I and f	(2)
	OBJECT IMAGE	Ignore arrow on image	
(i)	Image, line at right angles to principal axis to where rays cross. Judge by eye		
(ii)	Focal length, distance from where virtual ray crosses principal axis to centre of concave lens. Judge by eye (1)		

_	uestion umber	Answer	Acceptable answers	Mark
	(iii)	Short sight / short sightedness	Myopia/ myopic/ near sight	(1)

Question Number	Answer	Acceptable answers	Mark
(iv)	Substitution $ \underline{1} + \underline{1} = \underline{1} $ 0.5 v -0.33 (1)	Substitution and transformation in any order	(4)
	Transformation		
	Evaluation	-5.03 gets 3 marks +5, +5.03 gets 2 marks	
	(v) = -0.2 (m)	Any value that rounds up to + or - 0.2 m/ + or - 20 cm gets 4 marks	
		Allow power of ten error for 3 marks	
		Correct answer with no working awarded 4 marks	