Mark Scheme

Q1.

Question Number	Answer	Mark
	C The volume of the air inside the cylinder.	(1) AO 1 1
	The only correct answer is C	
	A is not correct because the mass remains unchanged B is not correct because the rate of collision decreases D is not correct because the pressure decreases	

Q2.

Question number	Answer	Mark
	A 293 K	(1)

Q3.

Question number	Answer	Mark
	An explanation that combines identification –knowledge and reasoning / justification • (particles / atoms / molecules) {hit / collide with} piston (1)	(2)
	 causing a force (on the piston) (1) 	

Q4.

Question number	Answer	Mark
:	An explanation that combines identification – knowledge and reasoning / justification • volume decrease makes the density of particles increase / more crowded idea (1) • increasing the rate at which particles collide (with the piston) (1)	(2)

Q5.

Question Number:	Answer	Ad <mark>ditional Guidance</mark>	Mark
(i)	at right angles / 90°	perpendicular / normal to the tube wall	(1) AO 1 1

Question Number:	Answer	Additional Guidance	Mark
(ii)	select and substitute into $P_1 \times V_1 = P_2 \times V_2$ (1) $400\ 000 \times V_1 = 100\ 000 \times 4.8$		(3) AO 2 1
	rearrangement (1) $V_1 = \frac{100\ 000 \times 4.8}{400\ 000}$	substitution and rearrangement in either order	
	evaluation (1)		
	(V ₁ =) 1.2 (litres)	award full marks for the correct answer without working POT error 2 marks	

Question Number:	Answer	Additional Guidance	Mark
(iii)	an explanation linking: work is done (in compressing the air) (1)		(2) AO 1 1
	increases the kinetic energy of the (air) particles / thermal energy (of the system) (1)		
		heat for thermal	
		accept answer in terms of p ΔV	
		$W = F \times d$	
		= p x (A x d)	
		= p ΔV	

Q6.

Question Number	Answer	Acceptable answers	Mark
(i)	an explanation linking two of the following three points:-		(2)
	particles move (1)	molecules/they move	
	bombarding/colliding (1)	hit ignore 'pushing'	
	with wall/side (1) (only give if one of the previous marks is there) (of container)	e.g. molecules push on walls = 0 bounce off inside of container =2	

Question Number	Answer	Acceptable answers	Mark
(ii)	substitution $P_2 = \underbrace{101\ 000\ x\ 340}_{2.5}$ $\underbrace{2.5}_{(1)}$ Evaluation $13.7 \text{ to any power of } 10$	1.37(36) X 10 ⁷ / 13736000	(3)
	(1) 13 700 000(Pa), 13 700kPa (1)	14 to any power of 10 14 000 000 (Pa), 14 000 (kPa) Full marks are awarded for the correct answer with no working	

Q7.

Question	Answer	Acceptable answers	Mark
Number			
(a)(i)	10.8 + or - 0.2 (cm)	Any value between 10.6(cm)	(1)
		and 11.0 (cm)	
		Accept 11 cm	

Question Number	Answer	Acceptable answers	Mark
(a)(ii)	B 2.1 × 10 ⁻² cm ³		(1)

Question Number	Answer	Acceptable answers	Mark
(a)(iii)	Temperature conversion to K 50°C to 323K OR 100°C to 373K (1) Substitution $V_1 = \frac{2.31 \times 10^{-2} \times 373}{323}$ (1) Evaluation $2.67 \times 10^{-2} \text{ (cm}^3\text{)}$	If equation is transformed to give V ₂ , allow correct substitution mark. . 0.0267(cm ³), 2.7 x 10 ⁻² (cm ³),	(3)
	(1)	0.027(cm³), 2.67 x 10 ⁻⁸ m³, 2.7 x 10 ⁻⁸ m³ Allow power of ten error for 2 marks e.g. 267 Allow 2.6 x 10 ⁻² for 3 marks Full marks for correct answer with no working	
		If temperature is not converted to Kelvin, maximum two marks e.g. $V_1 = \frac{2.31 \times 10^{-2} \times 100}{50}$ $4.62 \times 10^{-2} \text{(cm}^3)$	
		Allow power of ten error for 1 mark e.g. 4.62 2 marks for 4.62 x 10 ⁻² (cm ³) with no working	

Question Number	Answer	Acceptable answers	Mark
(b)	A description including: (Average) KE/it increases as the temperature increases (1)	Allow energy for kinetic energy Or reverse argument •	(3)
	Idea of proportionality / KE doubles when the temperature doubles (1)	(Average) KE/it is (directly) proportional to the Kelvin temperature gets all three marks	
	(when) temperature in Kelvin /K (1)	(Average) KE/it is (directly) proportional to the temperature gets first two marks Allow absolute scale	

Q8.

Question Number	Answer	Acceptable answers	Mark
(a)(i)	C stationary		(1)

Question Number	Answer	Acceptable answers	Mark
(a)(ii)	(Average KE/it is) halved	divided by 2,multiplied by 0.5	(1)

Question Number	Answer	Acceptable answers	Mark
(b)	Explanation in terms of particles linking the following:-		(3)
	 particles collide with / hit /strike / bombard (1) 	Accept "molecules/atoms" for particles	
	the wall / sides of the balloon (1)	Must mention particles etc to gain this mark	
	 (causing a) force / (rate of) change in momentum (1) 	Ignore "push"	

Question Number	Answer	Acceptable answers	Mark
(c)(i)	-46 + 273 (1)	273-46 / any use of 273	(1)

theonlinephysicstutor.com

Question	Answer	Acceptable answers	Mark
Number			
(c)(ii)	substitution: (1)	Accept either Pa or kPa for substitution	(3)
	101x 9.1 = 1.12 x V ₁ 273 227 Transposition (1)	substitution and transposition in any order	
	V ₂ = 101 x 9.1 x 227 273 x 1.12	ignore power of ten error until evaluation 680 (m³), 682.4 (m³), 682.35	
	evaluation: (1) 682 (m³)	full marks for the correct numerical answer without working	

Question Number	Answer	Acceptable answers	Mark
(c)(iii)	bursts/explodes or words to that effect		(1)

(Total marks for question = 10 marks)