Mark Scheme Q1. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|----|-----------------------------------|------| | | The position of the centre of gravity
moves to the left/backwards Or the
perpendicular distance (from O) (I
would be greater) (I) | 1) | MP1: accept lower for to the left | | | | The moment of the bag (about O) increases so the moment of R (and the size of R) decreases to preserve equilibrium (1) | 1) | | 2 | Q2. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|--|-----|---|------| | | Use of moment = force × perpendicular distance | (1) | MP1 not awarded if $\cos \theta$ not used or $\sin \theta$ not used | | | | Use of clockwise moments = anticlockwise moments | (1) | Example of calculation
$(18.5 \text{ kg} \times 9.81 \text{ N kg}^{-1}) \times x \cos \theta = 50$
$N \times 0.97 \text{ m} \times \cos \theta$ | 3 | | | Position of centre of gravity = 27
cm from base | (1) | x = 0.27 m | | | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|--|---|------| | | distance between the weight and | Accept centre of mass for centre of gravity (Allow annotations to a diagram with additional explanation for MP1/3) | | | | Or the anticlockwise moment is greater than the clockwise moment | 1) MD2 Account the transite a recovert | 3 | | | The idea that the picture stops
moving when the c of g is below
the nail | MP3 Accept: the turning moment
being 0 Or the clockwise moments
equal to the anti-clockwise
moments | | ## Q4. | Question
Number | Acceptable answers | | Additional guidance | Mark | |--------------------|---|-------------------|-----------------------|------| | (i) | MAX 2 Statement describing 740cos20 as the (perpendicular) component of weight of the hiker and Statement describing Wcos20 as the (perpendicular) component of the weight of the bag 2R is the push of the ground on the hiker Use of ΣF = 0 with reference to hiker being stationary | (1)
(1)
(1) | Accept reaction force | 2 | | Question
Number | Acceptable answers | Additional guidance | Mark | |--------------------|--|--|----------------| | (11) | G. 74037 0.05 | Example of calculation | | | (ii) | See 740 N × 0.25 m × cos 20 (=
173.8 N m) | (1) Moment of the weight of the man: | | | | , | (1) $740 \text{ N} \times 0.25 \text{ m} \times \cos 20 = 173.8 \text{ N m}$ | | | | See W × 0.10 m × cos 20 (=
0.0940W N m) | Moment of the weight of the bag: | | | | ŕ | $W \times 0.10 \text{ m} \times \cos 20 = 0.0940 W \text{ N m}$ | | | | • See R × 0.40 m (= 0.40N N m) | (1) Moment of R: $R \times 0.40 \text{ m} = 0.40R \text{ N}$ | | | | $Or 0.5(740\cos 20 + W\cos 20)$ | m | | | | Use of principle of moments | (1) $173.8 \text{ N m} = 0.40R + 0.0940W \text{ N m}$ | | | | e.g. substitution into: moment of | Re-arranging to make R the subject of | | | | weight of man = moment of weight
of bag + moment of R | the equation: | | | | of oag + moment of A | R = 435 N - 0.235W N | | | | Use of equation of the resultant force
with the equation obtained in MP4 | (1) Re-arranging the equation for the | | | | OR | (1) resultant force: | 6 | | | Use of principle of moments about
another point with the equation | R = 347.7 N + 0.470W | | | | obtained in MP4 | 435 N - 0.235W N = 347.7 N + 0.470 | \overline{V} | | | • W = 120 N | 0.705W= 87.3 | | | | W = 120 IV | W = 124 N | | ## Q5. | Question
Number | | Acceptable Answer | | Additional Guidance | Mark | |--------------------|---|-------------------|-----|--|------| | (a) | | | | Example of calculation | | | | • | Use of $W = mg$ | (1) | Mass of water = 85.0 litres $\times 1$ kg = 85.0 | | | | | | | kg | | | | • | W = 868 (N) | (1) | Mass of base and water = $85.0 \text{ kg} + 3.50$ | | | | | | | kg = 88.5 kg | | | | | | | Weight of base = $88.5 \text{ kg} \times 9.81 \text{ N kg}^{-1}$ = | | | | | | | 868.2 N | 2 | | Question
Number | Acceptable Answer | | Additional Guidance | Mark | |--------------------|--|------------|---|------| | (b) | See 868 N × 0.45 m × cos 15 (= 377.3 Nm) See 27 N × 2.0 m × cos 75 (= | (1)
(1) | MP1 accept sin75 for cos15 MP2 accept sin15 for cos75 | | | | 13.98 Nm) • See $F_{\rm w} \times 2.4$ m × cos 15 (= 2.31 $F_{\rm w}$) | (1) | MP3 accept sin75 for cos15 | | | | Use of principle of moments e.g. substitution into: moment of weight of base = moment of | | MP4, accept $>$ correctly used in place of = to indicate the point at which it will tip and ecf for W from 11 (a) | | | | weight of post arrangement +
moment of wind | (1) | Example of calculation (using perpendicular forces) Moment of weight of base = 868 N × | | | | • F _w = 157 or 158 N | (1) | cos 15 × 0.45 m = 377.29 Nm | | | | | | Moment of the post arrangement
= 27.0 N × cos 75 × (2.80 m – 0.80 m)
= 13.98 N m | | | | | | Moment of the wind = $F_w \times \cos 15 \times 2.40 \text{ m} = 2.31 F_w$ | | | | | | 377.29 Nm = 13.98 Nm + 2.31 $F_{\rm w}$ | | | | | | $F_{\rm w} = 157.28 \; {\rm N}$ | | | | | | Example of calculation (using perpendicular distances) | | | | | | (868 N × 0.45 m × cos 15)
= $(27 \text{ N} \times 2.0 \text{ m} \times \cos 75) + (F_w \times 2.4 \text{ m} \times \cos 15)$ | | | | | | $F_{\rm w} = 156.72 \rm N$ | 5 | | Question
Number | Acceptable Answer | | Additional Guidance | Mark | |--------------------|---|-----|---------------------|------| | (c) | F _w would increase | (1) | | | | | The <u>weight</u> of the base would be
heavier/increase | (1) | | | | | This increases the clockwise
moment Or this increases the
moment of the (weight of the)
base | (1) | | 3 |