Mark Scheme

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
	The position of the centre of gravity moves to the left/backwards Or the perpendicular distance (from O) (I would be greater) (I)	1)	MP1: accept lower for to the left	
	The moment of the bag (about O) increases so the moment of R (and the size of R) decreases to preserve equilibrium (1)	1)		2

Q2.

Question Number	Acceptable answers		Additional guidance	Mark
	Use of moment = force × perpendicular distance	(1)	MP1 not awarded if $\cos \theta$ not used or $\sin \theta$ not used	
	Use of clockwise moments = anticlockwise moments	(1)	Example of calculation $(18.5 \text{ kg} \times 9.81 \text{ N kg}^{-1}) \times x \cos \theta = 50$ $N \times 0.97 \text{ m} \times \cos \theta$	3
	Position of centre of gravity = 27 cm from base	(1)	x = 0.27 m	

Question Number	Acceptable answers	Additional guidance	Mark
	distance between the weight and	Accept centre of mass for centre of gravity (Allow annotations to a diagram with additional explanation for MP1/3)	
	Or the anticlockwise moment is greater than the clockwise moment	1) MD2 Account the transite a recovert	3
	 The idea that the picture stops moving when the c of g is below the nail 	MP3 Accept: the turning moment being 0 Or the clockwise moments equal to the anti-clockwise moments	

Q4.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	 MAX 2 Statement describing 740cos20 as the (perpendicular) component of weight of the hiker and Statement describing Wcos20 as the (perpendicular) component of the weight of the bag 2R is the push of the ground on the hiker Use of ΣF = 0 with reference to hiker being stationary 	(1) (1) (1)	Accept reaction force	2

Question Number	Acceptable answers	Additional guidance	Mark
(11)	G. 74037 0.05	Example of calculation	
(ii)	 See 740 N × 0.25 m × cos 20 (= 173.8 N m) 	(1) Moment of the weight of the man:	
	,	(1) $740 \text{ N} \times 0.25 \text{ m} \times \cos 20 = 173.8 \text{ N m}$	
	 See W × 0.10 m × cos 20 (= 0.0940W N m) 	Moment of the weight of the bag:	
	ŕ	$W \times 0.10 \text{ m} \times \cos 20 = 0.0940 W \text{ N m}$	
	• See R × 0.40 m (= 0.40N N m)	(1) Moment of R: $R \times 0.40 \text{ m} = 0.40R \text{ N}$	
	$Or 0.5(740\cos 20 + W\cos 20)$	m	
	Use of principle of moments	(1) $173.8 \text{ N m} = 0.40R + 0.0940W \text{ N m}$	
	e.g. substitution into: moment of	Re-arranging to make R the subject of	
	weight of man = moment of weight of bag + moment of R	the equation:	
	of oag + moment of A	R = 435 N - 0.235W N	
	 Use of equation of the resultant force with the equation obtained in MP4 	(1) Re-arranging the equation for the	
	OR	(1) resultant force:	6
	Use of principle of moments about another point with the equation	R = 347.7 N + 0.470W	
	obtained in MP4	435 N - 0.235W N = 347.7 N + 0.470	\overline{V}
	• W = 120 N	0.705W= 87.3	
	W = 120 IV	W = 124 N	

Q5.

Question Number		Acceptable Answer		Additional Guidance	Mark
(a)				Example of calculation	
	•	Use of $W = mg$	(1)	Mass of water = 85.0 litres $\times 1$ kg = 85.0	
				kg	
	•	W = 868 (N)	(1)	Mass of base and water = $85.0 \text{ kg} + 3.50$	
				kg = 88.5 kg	
				Weight of base = $88.5 \text{ kg} \times 9.81 \text{ N kg}^{-1}$ =	
				868.2 N	2

Question Number	Acceptable Answer		Additional Guidance	Mark
(b)	 See 868 N × 0.45 m × cos 15 (= 377.3 Nm) See 27 N × 2.0 m × cos 75 (= 	(1) (1)	MP1 accept sin75 for cos15 MP2 accept sin15 for cos75	
	13.98 Nm) • See $F_{\rm w} \times 2.4$ m × cos 15 (= 2.31 $F_{\rm w}$)	(1)	MP3 accept sin75 for cos15	
	Use of principle of moments e.g. substitution into: moment of weight of base = moment of		MP4, accept $>$ correctly used in place of = to indicate the point at which it will tip and ecf for W from 11 (a)	
	weight of post arrangement + moment of wind	(1)	Example of calculation (using perpendicular forces) Moment of weight of base = 868 N ×	
	• F _w = 157 or 158 N	(1)	cos 15 × 0.45 m = 377.29 Nm	
			Moment of the post arrangement = 27.0 N × cos 75 × (2.80 m – 0.80 m) = 13.98 N m	
			Moment of the wind = $F_w \times \cos 15 \times 2.40 \text{ m} = 2.31 F_w$	
			377.29 Nm = 13.98 Nm + 2.31 $F_{\rm w}$	
			$F_{\rm w} = 157.28 \; {\rm N}$	
			Example of calculation (using perpendicular distances)	
			(868 N × 0.45 m × cos 15) = $(27 \text{ N} \times 2.0 \text{ m} \times \cos 75) + (F_w \times 2.4 \text{ m} \times \cos 15)$	
			$F_{\rm w} = 156.72 \rm N$	5

Question Number	Acceptable Answer		Additional Guidance	Mark
(c)	F _w would increase	(1)		
	The <u>weight</u> of the base would be heavier/increase	(1)		
	This increases the clockwise moment Or this increases the moment of the (weight of the) base	(1)		3