Mark Scheme

Q1.

Question Number	Acceptable answers	Additional guidance			Mark	
	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of	IC points	IC mark	Max linkage mark available	Max final mark	6
	reasoning. The following table shows how the marks should	6	4	2	6 5	
	be awarded for indicative content.	4	3	1	4	
	Indicative content:	<u> </u>		_		
	IC1: set of (metal drift) tubes (in a line)	3	2	1	3	
	101. Set of (metal diff) tabes (in a mic)	2	2	0	2	
		1	1	0	1	
	IC2: electrons accelerated by electric field/potential difference	0	0	0	0	
	IC3: acceleration takes place in the gaps between tubes	IC points 1 and 4 may be awarded with well-drawn diagram			d with	
	IC4: adjacent tubes connected to opposite terminals of a power supply or opposite charge/polarity	between co	entres/ends	to distance of tubes m ed alternati		
	IC5: power supply/p.d./electric field is alternating (so that as electron emerges from one tube the next tube is positive)					
	IC6: time spent in each tube must be the same so as the electrons travel faster the tubes must					
	be longer / gaps between get longer					

Question Number	Acceptable answers	Additional guidance	Mark
(i)	• Converts eV to J (1) • use of $\Delta m = \Delta E / c^2$ (1) • mass = 1.98×10^{-27} (kg) (1)	Example of calculation $m = \frac{1115 \text{ V} \times 1.6 \times 10^{-19} \text{C} \times 10^{6}}{(3 \times 10^{8})^{2} (\text{ms}^{-1})^{2}}$ $m = 1.98 \times 10^{-27} \text{ kg}$	3
(ii)	 Converts prefix G to M (1) Or M to G Determines total energy / mass (1) of lambda before decay kinetic energy = 4985 MeV (1) 	Example of calculation 4.95 GeV = 4950 MeV Total Energy and mass before decay = 4950 + 1115 = 6065 MeV Total after = $140 + 940 + E_k$ $E_k = 6065 - 1080 = 4985 \text{ MeV}$	3

Question			A Library I and	
Number	Acceptable Answer		Additional guidance	Mark
	An explanation that makes reference to the following points: Pion/ positron radius decreasing indicates speed/momentum	(1)		
	smaller radius indicates positron has smaller	(1)		
	momentum than the pion • direction of deflection	(1)		
	indicates a positive charge by LH rule OR compares direction of deflection between positron and pion to conclude they have the same charge			
	Anti-muon short path – short lived	(1)		(6)
	conservation of charge indicates it has same charge as pion	(1)		
	Muon neutrino OR electron neutrino no path visible indicates no charge	(1)		

Question Number	Acceptable Answers
*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning.
	Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning.
	The following table shows how the marks should be awarded for indicative content.
	Indicative content:
	the lambda particle is neutral
	because it does not leave a track Or two tracks are opposite charged
	momentum of proton/ pion can be determined by measuring radius of curve
	• using $p = Bqr$
	law of conservation of momentum can then be applied
	so momentum/energy of the lambda particle can be determined

Additional Guidance					Mark		
					6		
IC points	IC mark	Max linkage mark availabl	Max final mark				
		e					
6	4	2	6				
5	3	2	5				
4	3	1	4				
3	2	1	3				
2	2	0	2				
1	1	0	1				
0	0	0	0				
IC4 $-p$ and r recognisable from the context of the answer IC5 and 6 can be awarded for a labelled momentum vector triangle							

Q5.

Question Number	Acceptable Answer		Additional guidance	Mark
(a)	An explanation that makes reference to the following: • due to the large mass and speed <u>OR</u> large momentum <u>OR</u> large energy	(1)		
	the alpha particle would have a large <u>change</u> in momentum when deflected through large angles which requires a large force	(1)		(2)

Question Number	Acceptable Answer	Additional guidance	Mark
(b)	• use of $F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$ (1)	Accept calculating a force for $r = 1.4 \times 10^{-10}$ and comparing forces	
	• charge of alpha = $2 \times 1.6 \times 10^{-19}$ (C) (1)	Example of calculation:	
	• $r = 1.3 \times 10^{-13} \text{ (m)}$ (1)	$(79 \times 2)(1.6 \times 10^{-19} \text{ C})^2$	
	• comparison of the two distances (1)	$r = \sqrt{8.99 \times 10^9 \text{ N m}^2 \text{C}^{-2} \times \frac{(79 \times 2)(1.6 \times 10^{-19} \text{ C})^2}{2}}$	
	conclusion that the alpha particle must reach a closer distance to give a larger force and relates this to the model	$r = 1.3 \times 10^{-13} \text{ m}$	(5)

Q6.

Question Number	Acceptable Answer		Additional Guidance	Mark
(a)(i)	a π ⁰ may be u Qr dd it must be a quark combined with its own antiquark so that overall charge is 0 OR it can only contain up or down quarks (as it is not a strange	(1)	Allow ss	
	particle)			(2)
(a)(ii)	mesons are made up of quarks, whereas leptons are fundamental particles	(1)		(1)

Question Number		Acceptable Answer		Additional Guidance	Mark
(b)(i)				Example of calculation:	
	•	$t = 5.05 \times 10^{-5} \text{ s}$	(1)	$t = \frac{s}{v} = \frac{15 \times 10^3 \mathrm{m}}{0.99 \times 3 \times 10^8 \mathrm{m s}^{-1}} = 5.05 \times 10^{-5} \mathrm{s}$	(2)
(b)(ii)	•	use or 1/2		Example of calculation:	
	•	$\lambda = 3.15 \times 10^5 \mathrm{s}^{-1}$	(1)	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{2.2 \times 10^{-6} \mathrm{s}} = 3.15 \times 10^{5} \mathrm{s}^{-1}$	
	•			$\frac{t_{1/2}}{N_0} = e^{-\lambda t} = e^{-3.15 \text{d} 0^6 \text{s}^{-1} \times 5.05 \text{d} 0^{-6} \text{s}} = 1.23 \times 10^{-7}$	
	•	$\frac{N}{N_0} = 1.23 \times 10^{-7}$	(1)	$\frac{N}{N_{\rm 0}} = 1.1 \times 10^{-7} \; \text{if "show that" value used}$	(4)
(b)(iii)	•	This is much smaller t the muon lifetime is n expected value			
	•	The high speed of the relativistic effects	mu	on has led to (1)	(2)

Q7.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	• Charge: -1 = -1 + 0	(1)		
	Baryon number: needs to be stated as 0	(1)		(3)
	• Lepton number: 0 = +1 + (-1)	(1)		(0)
(ii)	• Mass difference = 34 (MeV/c²)	(1)		
	• $E = \Delta mc^2$ so $E = 34 \text{ MeV}$	(1)	alt to $E = \Delta mc^2$ to show unit $\frac{MeV}{c^2} \times c^2$	(2)
(iii)	Mass - energy	(1)		
	Momentum	(1)		(2)

Question Number	Acceptable answers		Additiona	l guidance		Mark
*(iv)	This question assesses a student's ability to show a coherent and logically structured answer with	IC points	IC mark	Max linkage mark	Max final mark	
,	linkages and fully-	6	4	2	6	
	sustained reasoning.	5	3	2	5	
	Marks are awarded for indicative content and for	4	3	1	4	
	how the answer is structured and shows lines	3	2	1	3	
	of reasoning.	2	2	0	2	
	The following table shows how the marks should be	1	1	0	1	
	awarded for indicative	0	0	0	0	
	Indicative content:		or ic 2 and 3 eight of atmos	_	m	
	Uses velocity = distance/time	Example of o	calculation: 0(m)/0.99×3	×108(ms ⁻¹)		
	• Calculates a time = 3 ×10 ⁻⁵ s					(6)
	Compares with 2.2 ×10 ⁻⁶ s which is (15 times) smaller					(0)
	Identifies relativistic speed/effects (as velocity close to c)					
	Time (between events is much) slower/longer					
	Or mentions time dilation					
	So increase in muon lifetime					

Question Number	Answer	Additional guidance	Mark
(a)(i)	thermionic emission		(1)

Question Number	Acceptable Answer	Additional guidance	Mark
(a)(ii)	·	Example of calculation:	
	• equate $\frac{1}{2}mv^2$ and VQ (1)	$E = 1500 \text{ V} \times 1.6 \times 10^{-19} \text{ C} = 2.4 \times 10^{-16} \text{ J}$	
	• $v = 2.3 \times 10^7 \text{ m s}^{-1}$ (1)	$v = \sqrt{\frac{2 \times 2.4 \times 10^{-16} \mathrm{J}}{9.11 \times 10^{-81} \mathrm{kg}}} = 2.3 \times 10^7 \mathrm{m \ s^{-1}}$	
			(2)

Question Number	Acceptable Answer		Additional guidance	Mark
(b)(i)	• use of $F = EQ$ and $E = \frac{v}{d}$ OR see $F = \frac{vQ}{d}$	(1)		
	• equate $F = ma$ and $F = EQ$	(1)		(2)

Question Number	Acceptable Answer	Additional guidance	Mark
	 use of speed = (1) distance/time t = 8.7 × 10⁻¹⁰ (s) (1) 	Example of calculation: $t = \frac{0.02 \text{ m}}{2.3 \times 10^{7} \text{m s}^{-1}} = 8.7 \times 10^{-10} \text{ s}$	
1		$s = \frac{1}{2} \times \left(\frac{50 \text{ V} \times 1.6 \times 10^{-19} \text{ C}}{0.01 \text{ m} \times 9.11 \times 10^{-31} \text{ kg}} \right) \times (8.7 \times 10^{-10} \text{ s})^2$	(6)
	find s • $s = 3.3 \times 10^{-4} \text{ m}$ (1)		

Question Number	Acceptable Answer		Additional guidance	Mark
(c)	• use of $V = V_0 / \sqrt{2}$	(1)	Example of calculation:	
	vertical line	(1)	$V_0 = 53 \text{ V} \times \sqrt{2} = 75 \text{ V}$	
	positive and negative deflection shown	(1)		
	maximum deflection 75 V	(1)		(4)

Question Number	Ac	ceptable Answers		Additional guidance	Mark
а	•	fundamental – quarks and leptons	(1)	MP2 and 3 could be given for a named particle	
	•	Baryons made of 3 q	(1)	and its quark composition	5
	•	Mesons made of quark and antiquark	(1)	Can be inferred if either set named	
	•	6 quark Or 6 leptons	(1)		
	•	Each particle has an antiparticle	(1)		

Question Number	Acceptable Answers	Additional guidance	Mark
b	Conversion of J to ev	(1) Example of calculation: $E = 2.2 \times 10^{-25} \text{kg} \times (3.0 \times 10^8)^2 (\text{ms}^{-1})^2$ (1) $E = 1.98 \times 10^{-8} \text{ J}$ (2) $E = 1.98 \times 10^{-8} \text{ J} \div 1.6 \times 10^{-19} \text{ JeV}^{-1}$ $E = 124 \times 10^9 \text{ eV}$	3

Question Number	Ac	ceptable Answers		Additional guidance	Mark
c(i)		Energy (of protons) converted to mass (of Higgs) Or Energy is required to overcome electrostatic repulsion between protons Reference to $E = mc^2$ (can be written in any form)		Alternative based on numerical values: Observation that Higgs mass is 120 GeV/c ² This requires an energy of at least 120 GeV Each beam of protons would need an energy of at least 60 GeV	3
	•	Because c^2 is very large (E must be large) Or Higgs particle is massive so needs a lot of energy to create it	(1)		
c(ii)	•	Use of circumference = $2\pi r$	(1)	Example of calculation: $r = 27000 \div 2\pi$ r = 4300 m	3
		Use of $p = Bqr$ $p = 5.7 \times 10^{-15} \text{Ns}$	(l) (l)	$p = 8.3 \text{T} \times 1.6 \times 10^{-19} \text{C} \times 4300 \text{m}$ $p = 5.7 \times 10^{-15} \text{Ns}$	
ciii	0		(1)	zero	1

Question Number	Ac	cceptable Answers		Additional guidance	Mark
d	•	High speeds Or relativistic Mass (of proton) increases Or this equation is only valid at non-relativistic speeds	(1)	Alt: speeds close to speed of light	2