

Momentum Mark Scheme		Class: Date:	
Time:	111 minutes		
Marks:	111 marks		
Comments:			

theonlinephysicstutor.com

Mark schemes

	_
1	

(a) Zero / 0

Accept none

Nothing is insufficent

1

velocity / speed = 0

accept it is not moving paintball has not been fired is insufficient

1

(b) 0.27

allow **1** mark for correct substitution, ie $p = 0.003(0) \times 90$ provided no subsequent step

2

1

(c) equal to

[5]

2

(a) momentum before (jumping) = momentum after (jumping)

accept momentum (of the skateboard and skateboarder) is

conserved

1

before (jumping) momentum of skateboard and skateboarder is zero accept before (jumping) momentum of skateboard is zero accept before (jumping) total momentum is zero

1

after (jumping) skateboarder has momentum (forwards) so skateboard must have (equal) momentum (backwards)

answers only in terms of equal and opposite forces are insufficient

1

(b) 7

accept –7 for **3** marks allow **2** marks for momentum of skateboarder equals 12.6

or

$$0 = 42 \times 0.3 + (1.8 \times -v)$$

or

allow 1 mark for stating use of conservation of momentum

F.C

3

[6]

3

2

1

5

1

2

1

- (a) Throughout the question the equation M = mv is credited once only. This is the first time it appears. The mark scheme below assumes it will appear in (i).
 - (i) M = mv m x v sufficient not m x s, mass x speed
 = 1500 x 8
 = 12 000
 (see marking of calculations)
 - (ii) M = mv $M = 2000 \times 1 = 2000$ (see marking of calculations)
 - (iii) must be sum of (i) and (ii) 14 000 for 1 mark
- (b) total mass = 3500 momentum = 14 000 (conserved) M = mv or v = 14 000/3500 v = 4 m/s
- (c) (i) it reduces for 1 mark
 - (ii) ke to sound/heat for 1 mark

1 [12]

4

(a) (i) 210

allow 1 mark for correct substitution i.e. 35 x 6

kg m/s **or** Ns

do **not** accept n for N accept 210 000g m/s for **3** marks

(ii) 840

if answer given is not 840 accept their (a)(i) in kg m/s \div 0.25 correctly calculated for both marks allow **1** mark for correct substitution i.e. 210 \div 0.25 or their (a)(i) \div 0.25

2

Page 4 of 13

(b)	increases the time to stop	theonlinephysicstutor.
(b)	increases the time to stop	
	accept increases impact time	
	do not accept any references to slowing down time	
		1
	decreases rate of change in momentum	
	accept reduces acceleration/deceleration	
	reduces momentum is insufficient	
	reduces momentum is insuminent	1
		-
	reduces the force (on the child)	
		1
(-)	and the form	
(c)	any two from:	
	insufficient range of tests/thicknesses for required cfh	
	accept need data for thicknesses above 80 mm/ cfh 2.7 m	
	not enough tests is insufficient	
	not enough tests is insumment	
	(seems to be) some anomalous data	
	(repeats) needed to improve reliability (of data)	
	accept data/ results are unreliable	
	do not accept maybe systematic/random error	
	do not accept maybe systematic/random endi do not accept reference to precision	
	do not accept reference to precision	
	 need to test greater range/variety of dummies 	
	accept children for dummies	
	accept specific factor such as weight/height/size	
	accipi specime sacri ac meigra riagi	2
(d)	Tyres do not need to be dumped/burned/ less land-fill/ saves on raw	
	materials	
	accept less waste	
	do not accept recycling on its own	
		1

[11]

ideas that greater speed means more kinetic energy (a) gains 1 mark

but any evidence of the formula ½ mv² but making the case that kinetic energy depends on the speed squared gains 3 marks

or that $2^2 = 4$

3

(b) (i) any evidence of concept of momentum or mass \times speed (or velocity) in words or figures e.g. 9.5×20 or 0.5×40 gains 1 mark

but correct values for momentum of lorry and cari.e. 190 and 20 [ignore units]gains 2 marks

but initial momentum correctly calculated 170 or 190 – 20 gains 3 marks

THEN

evidence when calculating final speed of idea that momentum is conserved use of combined mass

each gain 1 mark

but

17 [or 0.1 × figure for initial momentum]
(NB direction <u>not</u> required)

gains 3 marks

(ii) <u>kinetic</u> energy is lost

for 1 mark

[credit (some kinetic) energy transferred as heat/sound]
[NB Accept only answers in terms of energy as required by the question]

[10]

6 (a) 4.2

2 marks for correct substitution **and** transformation, ie 1155/275 allow **1** mark for correct resultant force with a subsequent incorrect method, ie 1155

allow 1 mark for an incorrect resultant force with a subsequent correct method,

eg answers of 7.27 or 10.34 gain 1 mark

3

6

(b) (i) YES

marks are for the explanation

any two from:

- · data (from police files) can be trusted
- data answers the question asked allow a conclusion can be made from the data
- large sample used

NO

any two from:

- · the sample is not representative
- the sample size is too small
- accident files do not indicate age / experience of riders
 an answer YES and NO can score 1 mark from each set of mark
 points
- (ii) more accidents with motorbikes up to 125 cc

accept for **2** marks an answer in terms of number of under 125 cc to accidents ratio compared correctly with number of over 500 cc to accidents ratio

even though there are fewer of these bikes than bikes over 500 cc

(c) (i) increases the time taken to stop

accept increases collision time

decreases rate of change in momentum

accept reduces acceleration / deceleration

$$accept F = \frac{\Delta mv}{\Delta t}$$

reduces momentum is insufficient

reduces the force (on the rider)

1

1

2

1

1

(ii) YES

any sensible reason, eg:

the mark is for the reason

- cannot put a price on life / injury accept may save lives
- fewer (serious) injuries
 accept reduces risk of injury
- reduces cost of health care / compensation

NO

any sensible suggestion, eg:

- money better spent on ... needs to be specific
- · total number of riders involved is small

[11]

7

(a) (i) distance travelled under the braking force

accept distance travelled between applying the brakes and stopping

1

1

- (ii) any **one** from:
 - icy / wet roads accept weather (conditions)
 - (worn) tyres
 - road surface accept gradient of road
 - mass (of car and passengers)
 accept number of passengers
 - (efficiency / condition of the) brakes. friction / traction is insufficient

1

(iii) greater the speed the greater the braking force (required) must mention both speed and force

```
(b) 22.5
```

allow 1 mark for showing correct use of the graph with misread figures

or

for showing e.g. 90÷4 an answer 17 gains **1** mark any answer such as 17.4 or 17.5 scores 0

2

(c) (i) momentum before = momentum after

or

(total) momentum stays the same

accept no momentum is lost

accept no momentum is gained

ignore statements referring to energy

1

(ii) 5

allow **2** marks for correctly obtaining momentum before as 12 000

or

allow **2** marks for $1500 \times 8 = 2400 \times V$

or

allow 1 mark for a relevant statement re conservation of momentum

or

allow 1 mark for momentum before = 1500×8

3

Page 9 of 13

(d) the seat belt stretches

1

driver takes a longer (*impact*) time to slow down and stop (than a driver hitting a hard surface / windscreen / steering wheel)

1

for the (same) change of momentum

accept so smaller deceleration / negative acceleration

1

a smaller force is exerted (so driver less likely to have serious injury than driver without seat belt)

or

the seat belt stretches (1)

do not accept impact for force

driver travels a greater distance while slowing down and stopping (than a driver hitting a hard surface / windscreen / steering wheel) (1)

for (same) amount of work done (1)

accept for (same) change of KE

a smaller force is exerted (so driver less likely to have serious injury than driver without seat belt) (1)

do not accept impact for force

[13]

1

8

(a) (i) either

the momentum in a particular direction after (the collision) is the same as the momentum in that direction before (the collision)

accept 'momentum before equals momentum after' for 1 mark

or <u>total</u> momentum after (the collision) equals the <u>total</u> momentum before (the collision) (2)

accept 'momentum before equals momentum after' for 1 mark

2

(ii) explosion(s)

or (action of a) rocket (motor(s))

or (action of a) jet (engine)

or firing a gun

accept any other activity in which things move apart as a result of the release of internal energy eg throwing a ball

1

(iii) momentum = mass × velocity **or** any correctly transposed version

accept momentum = mass \times speed accept p = mvdo **not** accept momentum = ms or M = mv

@TOPhysicsTutor

facebook.com/TheOnlihePhysicsTutor

(iv) 0.8

if answer 0.8 not given, any **two** for (1) each: momentum of $\mathbf{X} = 0.2 \times 1.2$ = momentum of \mathbf{X} and \mathbf{Y} after impact = $0.3 \times v$ or = $(0.1 + 0.2) \times v$

3

m/s

1

to the right

1

(v) any **one** from:

conservation of momentum (applies)

no external forces

do not accept just 'no (other) forces act'

friction is negligible / insignificant

no friction

no air resistance

1

(b) force = (change in) momentum ÷ time or any correctly transposed version

1

4000 or 4 kilonewtons

dependent on correct or no equation force = $5 \div 0.00125$ gains **1** mark

2

[13]

(a)	(i)	momentum = mass × velocity	theonlinephys
		accept × speed br any transposed version	
			1
	(ii)	11.2 to 11.3	
		0.75 × 15 for 1 mark	
			2
		kg m/s down(wards) or Ns down(ward)	
		n.b. both unit and direction required for this mark	
			1
	(iii)	11.2 to 11.3	
		accept same numerical answer as part (a)(ii)	
		accept answer without any unit or with the same unit as in p	part
		(a)(ii), even if incorrect, but any other unit cancels the mark	1
			1
		force = change in momentum	
	(iv)	force = time	
		accept transposed version	
			1
	(v)	112 to 113 or numerical value from (a)(ii) × 10	
		11.25 ÷ 0.1 or (a)(ii) ÷ 0.1 for 1 mark	
			2
		newton(s)	
		or N	
		accept Newton(s)	
		do not credit 'Ns' or n	
			1
(b)	(the	user will experience a) <u>large</u> change in momentum	
		do not credit just ' momentum changes'	
			1
	•) seat belt increases the time for this to occur or	
	seat	belt stops you hitting something which would stop you quickly	
		do not credit just ' stops you hitting the windscreen etc.'	1
	, ,		•
	(so)	the force on the user is less(*)	1
			1
	(so)	less chance of (serious / fatal) injury(*)	
		(*) depends on previous response re momentum or continum movement	ied
		толени	1

(a)	Each scale optimum
` '	Else both half size
	Straight line joining 30,0 to 30,0.67 to 0, 5.67
	any 5 for 1 mark each

5

(b) 6 Else a = 30/5 gets 2 marks

Else a = v/t

gets 1 mark

3

(c) 9000 Else $F = 6 \times 1500$ gets 2 marks

Else F = ma

gets 1 mark

3

(d) (i) Driver has forward momentum
Which is conserved
Giving drive relative forward speed to car
for one mark each

3

(ii) Car stops in 75m gets 1 mark W = F.d or 9000×75

> W = 675 000 J **OR** ke = $1/2 \text{ mv}^2$ gets 1 mark

gets 1 mark

ke = 1/2.1500.302 ke = 675 000 J

3

[17]