Question		on	Answers	Notes	Total
8.	а	i	equating centripetal to electrical force $\frac{2ke^2}{r^2} = \frac{mv^2}{r}$ to get result \checkmark		1
8.	а	ii	uses (a)(i) to state $E_k = \frac{ke^2}{r}$ OR states $E_p = -\frac{2ke^2}{r}$ \checkmark adds $\ll E_{TOT} = E_k + E_p = \frac{ke^2}{r} - \frac{2ke^2}{r}$ a to get the result \checkmark		2
8.	а	iii	the total energy decreases OR by reference to $E_{TOT} = -\frac{ke^2}{r} \checkmark$ the radius must also decrease \checkmark	Award [0] for an answer concluding that radius increases	2

(continued...)

C	Question		Answers	Notes	Total
9.	а	i	$E = \frac{1}{2}m\frac{GM}{r} - \frac{GMm}{r} = -\frac{1}{2}\frac{GMm}{r} \checkmark$ comparison with $V = -\frac{GM}{r} \checkmark$ «to give answer»		2
9.	a	ii	ALTERNATIVE 1 «at the position of the planet» the potential depends only on the mass of the star /does not depend on the radius of the star ✓ the potential will not change and so the energy will not change ✓ ALTERNATIVE 2 r / distance between the centres of the objects / orbital radius remains unchanged ✓ since $E_{Total} = -\frac{1}{2} \frac{GMm}{r}$, energy will not change ✓		2
9.	b		$\frac{kQ}{(0.600 + 0.820)^2} = \frac{kq}{0.820^2} \checkmark$ $\frac{Q}{q} = \frac{(0.600 + 0.820)^2}{0.820^2} = 2.9988 \approx 3 \checkmark$		2

Question		on	Answers	Notes	Total
8.	а		force per unit charge ✓		2
			acting on a small/test positive charge ✓		2
8.	b		horizontally to the left ✓	Arrow does not need to touch X	1
8.	С		proton moves to the right/they move in opposite directions ✓	Allow ECF from (b)	
			force on each is initially the same ✓		
			proton accelerates less than electron initially «because mass is greater» 🗸	Accept converse argument for electron	
			field is stronger on right than left «as lines closer» ✓		4 max
			proton acceleration increases «as it is moving into stronger field»		
			OR		
			electron acceleration decreases «as it is moving into weaker field» ✓		