Q	uestic	on	Answers	Notes	Total
2.	a	i	read off between 17 and 19 «deg» \checkmark correct use of $d = \frac{\lambda}{10^{-15}} = 7.8 \times 10^{-15}$ «m» \checkmark	Award ecf for wrong angle in MP1.	
			so radius = $\frac{7.8}{2}$ «fm» = 3.9 «fm» \checkmark	Answer for MP3 must show at least 2 sf.	3
2.	а	ii	$R_{\text{Th}} = R_{\text{Si}} \left(\frac{A_{\text{Th}}}{A_{\text{Si}}}\right)^{\frac{1}{3}} \text{ or substitution } \checkmark$ 7.4 «fm» \checkmark		2
2.	а	iii	electron wavelength shorter than alpha particles (thus increased resolution) <i>OR</i> electron is not subject to strong nuclear force ✓		1
2.	а	iv	nuclear forces act ✓ nuclear recoil occurs ✓ significant penetration into nucleus / probing internal structure of individual nucleons ✓ incident particles are relativistic ✓		2 max

(Question 2 continued)

Q	uesti	on	Answers Notes	Total
2.	b	i	$ \begin{array}{c} {}^{30}_{15}P \to \left({}^{30}_{14}Si \right) \checkmark \\ + {}^{0}_{+1}e + \nu_{e} \checkmark \end{array} $	2
2.	b	ii	t n udd V_e W_e	3
2.	b	iii	quarks cannot be directly observed as free particles/must remain bound to other quarks/quarks cannot be isolated ✓ because energy given to nucleon creates other particles rather than freeing quarks/OWTTE ✓	2

(Question 2 continued)

Question		on	Answers	Notes	Total
2.	с		models need testing/new information may change models/new technology may bring new information/Models can be revised/ <i>OWTTE √</i>		1

3.	а	two waves superpose/mention of superposition/mention of «constructive» interference ✓ they arrive in phase/there is a path length difference of an integer number of wavelengths ✓		2
3.	b	path difference = 0.062 «m»√ so wavelength = 0.031 «m»√ frequency = 9.7 × 10 ⁹ «Hz»√	Award [2 max] for 4.8 x 10 ⁹ Hz.	3
3.	с	intensity is modulated by a single slit diffraction envelope OR intensity varies with distance OR points are different distances from the slits √		1

(Question 8 continued)

Question		on	Answers	Notes	Total
8.	b	i	with $n = 3$, $v = \ll \sqrt{\frac{2 \times 8.99 \times 10^9 \times (1.6 \times 10^{-19})^2}{9.11 \times 10^{-31} \times 9 \times 2.7 \times 10^{-11}}} = \gg 1.44 \times 10^6 \ \text{wm s}^{-1} \gg \checkmark$ $\lambda = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.44 \times 10^6} OR \lambda = 5.05 \times 10^{-10} \ \text{wm} \gg \checkmark$		2
8.	b	ii	$\frac{2\pi r}{\lambda} = \ll \frac{2\pi \times 9 \times 2.7 \times 10^{-11}}{5.1 \times 10^{-10}} = 2.99 \text{s} \cong 3 \checkmark$	Allow ECF from (b)(i)	1
8.	с		reference to fixed orbits/specific radii <i>OR</i> quantized angular momentum in Bohr model ✓ electron described by a wavefunction/as a wave in Schrödinger model <i>OR</i> as particle in Bohr model ✓ reference to «same» energy levels in both models ✓ reference to «relationship between wavefunction and» probability «of finding an electron in a point» in Schrödinger model ✓		3 max

Question		on	Answers	Notes	Total
11.	а	i	«low intensity light would» transfer energy to the electron at a low rate/slowly \checkmark time would be required for the electron «to absorb the required energy» to escape/be emitted \checkmark	OWTTE	2
11.	а	ii	win the photon theory of light» the electron interacts with a single photon \checkmark and absorbs all the energy <i>OR</i> and can leave the metal immediately \checkmark	Reference to photon-electron collision scores MP1	2
11.	b	i	$\phi = \frac{hc}{\lambda} - E_{\rm K} \checkmark$ $E_{\rm K} = 1.5 \text{ «eV » } \checkmark$ $\phi = \left(\frac{1.24 \times 10^{-6}}{480 \times 10^{-9}} - 1.5 \right) = 1.1 \text{ «eV } \checkmark$	Allow reading from the graph of $E_k=1.4$ leading to an answer of 1.2 «eV».	3

(Question 11 continued)

Question		on	Answers	Notes	Total
11.	а		«de Broglie's hypothesis states that the» electron is represented by a wave \checkmark therefore it cannot be localized/it is spread out/it does not have a definite position \checkmark	Award MP1 for any mention of wavelike property of an electron.	2
11.	b	i			2
11.	b	ii	this implies that the nucleons are very tightly packed/that there is very little space in between the nucleons \checkmark because the nuclear force is stronger than the electrostatic force \checkmark		2
11.	с	i	number of nuclei is $\frac{28 \times 10^{-3}}{64} \times 6.02 \times 10^{23} / 2.63 \times 10^{20} \checkmark$ $A = \ll \lambda N = 2.63 \times 10^{20} \times \frac{5.5 \times 10^{-2}}{3600} \approx 4.0 \times 10^{15} \text{ (Bq)} \checkmark$		2
11.	с	ii	$\frac{1}{3} = e^{-\lambda t} \checkmark$ $t = 20 \text{ whr} \checkmark$		2

8.	а		$E_1 = -13.6 \text{ (eV)} E_2 = -\frac{13.6}{4} = -3.4 \text{ (eV)} \checkmark$ energy of photon is difference $E_2 - E_1 = 10.2 \text{ (a)} \lor \checkmark$	Must see at least 10.2 eV.	2
8.	b	i	$10-5.1 = 4.9 \text{ eV} \gg \checkmark$ $4.9 \times 1.6 \times 10^{-19} = 7.8 \times 10^{-19} \text{ eJ} \gg \checkmark$	Allow 5.1 if 10.2 is used to give 8.2×10^{-19} «J».	2
8.	b	ii	EPE produced by battery ✓ exceeds maximum KE of electrons / electrons don't have enough KE ✓	For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.	2
8.	b	iii	4.9«V» ✓	Allow 5.1 if 10.2 is used in (b)(i). Ignore sign on answer.	1

(Question 8 continued)

(Question 8 continued)

Question		on	Answers	Notes	Total
8.	d		the base of the thundercloud must be parallel to the Earth surface		
			OR		
			the base of the thundercloud must be flat		1
			OR		
			the base of the cloud must be very long «compared with the distance from the surface» \checkmark		

9.	а	 «most of» the mass of the atom is confined within a very small volume/nucleus ✓ «all» the positive charge is confined within a very small volume/nucleus ✓ electrons orbit the nucleus «in circular orbits» ✓ 	2 max
9.	b	the electrons accelerate and so radiate energy \checkmark they would therefore spiral into the nucleus/atoms would be unstable \checkmark electrons have discrete/only certain energy levels \checkmark the only orbits where electrons do not radiate are those that satisfy the Bohr condition $\ll mvr = n \frac{h}{2\pi} \gg \checkmark$	3 max

(Question 9 continued)

Question		on	Answers	Notes	Total
9.	c	i	$\frac{m_e v^2}{r} = \frac{ke^2}{r^2}$ OR $KE = \frac{1}{2}PE \text{ hence } \frac{1}{2}m_e v^2 = \frac{1}{2}\frac{ke^2}{r} \checkmark$ «solving for v to get answer»	Answer given – look for correct working	1
9.	C	ii	combining $v = \sqrt{\frac{ke^2}{m_e r}}$ with $m_e vr = \frac{h}{2\pi}$ using correct substitution \checkmark «eg $m_e^2 \frac{ke^2}{m_e r} r^2 = \frac{h^2}{4\pi^2}$ » correct algebraic manipulation to gain the answer \checkmark	Answer given – look for correct working Do not allow a bald statement of the answer for MP2. Some further working eg cancellation of m or r must be shown	2
9.	c	iii	$ r = \frac{(6.63 \times 10^{-34})^2}{4\pi^2 \times 8.99 \times 10^9 \times 9.11 \times 10^{-31} \times (1.6 \times 10^{-19})^2 } $ $ r = 5.3 \times 10^{-11} \text{ m } \checkmark $		1
9.	d	i	the energy released is $3.54 - 0.48 = 3.06$ «MeV» \checkmark this is shared by the electron and the antineutrino \checkmark so the electron's energy varies from 0 to 3.06 «MeV» \checkmark		3
9.	d	ii	the palladium nucleus emits the photon when it decays into the ground state «from the excited state» \checkmark		1

(Question 9 continued)

Question		on	Answers	Notes	Total
9.	d	111	Photon energy $E = 0.48 \times 10^{6} \times 1.6 \times 10^{-19} = (7.68 \times 10^{-14} J) \checkmark$ $\lambda = \left(\frac{hc}{E}\right) = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{7.68 \times 10^{-14}} = 2.6 \times 10^{-12} \text{ m} \text{ m} \checkmark$	Award [2] for a bald correct answer Allow ECF from incorrect energy	2
9.	e	i	line <u>with arrow</u> as shown labelled anti-neutrino/ \overline{v}	Correct direction of the "arrow" is essential The line drawn must be "upwards" from the vertex in the time direction i.e. above the horizontal eg: time time d quark	1
9.	е	ii	$V = W^{-} \checkmark$		1