Question			Answers	Notes	Total
2.	a	i	read off between 17 and 19 «deg» \checkmark correct use of $d=\frac{\lambda}{\sin \theta}=7.8 \times 10^{-15} « \mathrm{~m} » \checkmark$ $\text { so radius }=\frac{7.8}{2} \text { «fm» }=3.9 \text { «fm» } \checkmark$	Award ecf for wrong angle in MP1. Answer for MP3 must show at least 2 sf.	3
2.	a	ii	$R_{\mathrm{Th}}=R_{\mathrm{Si}}\left(\frac{A_{\mathrm{Th}}}{A_{\mathrm{si}}}\right)^{\frac{1}{3}}$ or substitution \checkmark $7.4 \text { «fm» }$		2
2.	a	iii	electron wavelength shorter than alpha particles (thus increased resolution) OR electron is not subject to strong nuclear force \checkmark		1
2.	a	iv	nuclear forces act \checkmark nuclear recoil occurs \checkmark significant penetration into nucleus / probing internal structure of individual nucleons $\sqrt{ }$ incident particles are relativistic \checkmark		2 max

(Question 2 continued)

Question			Answers	Notes	Total
2.	b	i	$\begin{aligned} & { }_{15}^{30} \mathrm{P} \rightarrow\left({ }_{14}^{30} \mathrm{Si}\right) \checkmark \\ & +{ }_{+1}^{0} \mathrm{e}+v_{\mathrm{e}} \checkmark \end{aligned}$		2
2.	b	ii	correct change of either u to $d \checkmark$ W+ shown \checkmark correct arrow directions for positron and electron neutrino \checkmark		3
2.	b	iii	quarks cannot be directly observed as free particles/must remain bound to other quarks/quarks cannot be isolated \checkmark because energy given to nucleon creates other particles rather than freeing quarks/OWTTE \checkmark		2

(Question 2 continued)

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 2. | c | models need testing/new information may change models/new technology
 may bring new information/Models can be revised/OWTTE \checkmark | $\mathbf{1}$ | |

(Question 8 continued)

Question			Answers	Notes	Total
8.	b	i	with $n=3, v=« \sqrt{\frac{2 \times 8.99 \times 10^{9} \times\left(1.6 \times 10^{-19}\right)^{2}}{9.11 \times 10^{-31} \times 9 \times 2.7 \times 10^{-11}}}=» 1.44 \times 10^{6}<\mathrm{ms}^{-1}$ » $\lambda=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.44 \times 10^{6}} \text { OR } \lambda=5.05 \times 10^{-10} « \mathrm{~m} » \downarrow$		2
8.	b	ii	$\frac{2 \pi r}{\lambda}=« \frac{2 \pi \times 9 \times 2.7 \times 10^{-11}}{5.1 \times 10^{-10}}=2.99 » \cong 3$ ل	Allow ECF from (b)(i)	1
8.	c		reference to fixed orbits/specific radii $O \boldsymbol{R}$ quantized angular momentum in Bohr model $\sqrt{ }$ electron described by a wavefunction/as a wave in Schrödinger model $O R$ as particle in Bohr model $\sqrt{ }$ reference to «same» energy levels in both models \checkmark reference to «relationship between wavefunction and» probability «of finding an electron in a point» in Schrödinger model \checkmark		3 max

Question			Answers	Notes	Total
11.	a	i	«low intensity light would» transfer energy to the electron at a low rate/slowly \checkmark time would be required for the electron «to absorb the required energy» to escape/be emitted \checkmark	OWTTE	2
11.	a	ii	«in the photon theory of light» the electron interacts with a single photon $\boldsymbol{\checkmark}$ and absorbs all the energy $O \boldsymbol{R}$ and can leave the metal immediately \checkmark	Reference to photon-electron collision scores MP1	2
11.	b	i	$\begin{aligned} & \phi=\frac{h c}{\lambda}-E_{\mathrm{K}} \checkmark \\ & E_{\mathrm{K}}=1.5 « \mathrm{eV} » \checkmark \\ & \phi=« \frac{1.24 \times 10^{-6}}{480 \times 10^{-9}}-1.5=» 1.1 « \mathrm{eV} » \quad \end{aligned}$	Allow reading from the graph of $E_{k}=1.4$ leading to an answer of 1.2 «eV».	3

(continued...)
(Question 11 continued)

Question			Answers	Notes	Total
11.	b	ii	similar curve lower than original \checkmark with same horizontal intercept \checkmark		2

Question			Answers	Notes	Total
11.	a		«de Broglie's hypothesis states that the» electron is represented by a wave \checkmark therefore it cannot be localized/it is spread out/it does not have a definite position \checkmark	Award MP1 for any mention of wavelike property of an electron.	2
11.	b	i	$\begin{aligned} & « d \sin \theta=\lambda \Rightarrow » d=\frac{1.6 \times 10^{-15}}{\sin 17^{\circ}} / 5.47 \times 10^{-15} \text { «m» } \\ & R=\frac{d}{2} \approx 2.7 / 2.8 \times 10^{-15} « \mathrm{~m} » \end{aligned}$		2
11.	b	ii	this implies that the nucleons are very tightly packed/that there is very little space in between the nucleons \checkmark because the nuclear force is stronger than the electrostatic force \checkmark		2
11.	c	i	number of nuclei is $\frac{28 \times 10^{-3}}{64} \times 6.02 \times 10^{23} / 2.63 \times 10^{20} \checkmark$ $A=« \lambda N=2.63 \times 10^{20} \times \frac{5.5 \times 10^{-2}}{3600} »=4.0 \times 10^{15} \text { «Bq» } \checkmark$		2
11.	c	ii	$\begin{aligned} & \frac{1}{3}=e^{-\lambda t} \checkmark \\ & t=20 « h r » \end{aligned}$		2

8.	a		$E_{1}=-13.6 « \mathrm{eV} » E_{2}=-\frac{13.6}{4}=-3.4 « \mathrm{eV} » \checkmark$ energy of photon is difference $E_{2}-E_{1}=10.2 « \approx 10 \mathrm{eV}$ » \checkmark	Must see at least 10.2 eV .	2
8.	b	i	$\begin{aligned} & 10-5.1=4.9 \text { «eV» } \\ & 4.9 \times 1.6 \times 10^{-19}=7.8 \times 10^{-19} \text { «J» } \end{aligned}$	Allow 5.1 if 10.2 is used to give 8.2×10^{-19} «J».	2
8.	b	ii	EPE produced by battery \checkmark exceeds maximum KE of electrons / electrons don't have enough KE \checkmark	For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.	2
8.	b	iii	4.9 «V»	Allow 5.1 if 10.2 is used in (b)(i). Ignore sign on answer.	1

(continued...)
(Question 8 continued)

8.	C	i	two equally spaced vertical lines (judge by eye) at approximately $1 / 3$ and $2 / 3 \checkmark$ labelled correctly \checkmark		2
8.	C	ii	kinetic energy at collecting plate $=0.9$ «eV» \checkmark $\text { speed }=« \sqrt{\frac{2 \times 0.9 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}}} »=5.6 \times 10^{5}<\mathrm{ms}^{-1} » \checkmark$	Allow ECF from MP1	2

(Question 8 continued)

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 8. | d | OR base of the thundercloud must be parallel to the Earth surface
 the base of the thundercloud must be flat
 OR
 the base of the cloud must be very long «compared with the distance from the
 surface» \checkmark | $\mathbf{1}$ |

9.	\mathbf{a}		«most of» the mass of the atom is confined within a very small volume/nucleus \checkmark «all» the positive charge is confined within a very small volume/nucleus \checkmark electrons orbit the nucleus «in circular orbits» \checkmark	
9.	\mathbf{b}	the electrons accelerate and so radiate energy \checkmark they would therefore spiral into the nucleus/atoms would be unstable \checkmark electrons have discrete/only certain energy levels \checkmark the only orbits where electrons do not radiate are those that satisfy the Bohr condition «mvr=n $\frac{h}{2 \pi}$ » \checkmark	$\mathbf{3}$ max	

(Question 9 continued)

Question			Answers	Notes	Total
9.	C	i	$\frac{m_{\mathrm{e}} v^{2}}{r}=\frac{k e^{2}}{r^{2}}$ OR $\mathrm{KE}=\frac{1}{2} \mathrm{PE}$ hence $\frac{1}{2} m_{e} v^{2}=\frac{1}{2} \frac{\mathrm{ke}^{2}}{r} \checkmark$ «solving for v to get answer»	Answer given - look for correct working	1
9.	c	ii	combining $v=\sqrt{\frac{k e^{2}}{m_{\mathrm{e}} r}}$ with $m_{\mathrm{e}} v r=\frac{h}{2 \pi}$ using correct substitution \checkmark $\text { «eg } m_{\mathrm{e}}{ }^{2} \frac{k e^{2}}{m_{\mathrm{e}} r} r^{2}=\frac{h^{2}}{4 \pi^{2}} »$ correct algebraic manipulation to gain the answer \checkmark	Answer given - look for correct working Do not allow a bald statement of the answer for MP2. Some further working eg cancellation of m or r must be shown	2
9.	c	iii	$\begin{aligned} & « r=\frac{\left(6.63 \times 10^{-34}\right)^{2}}{4 \pi^{2} \times 8.99 \times 10^{9} \times 9.11 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^{2}} » \\ & r=5.3 \times 10^{-11} « \mathrm{~m} » \checkmark \end{aligned}$		1
9.	d	i	the energy released is $3.54-0.48=3.06 « \mathrm{MeV} » \checkmark$ this is shared by the electron and the antineutrino \checkmark so the electron's energy varies from 0 to 3.06 «MeV» \checkmark		3
9.	d	ii	the palladium nucleus emits the photon when it decays into the ground state «from the excited state»		1

(Question 9 continued)

Question			Answers	Notes	Total
9.	d	iii	Photon energy $\begin{aligned} & \mathrm{E}=0.48 \times 10^{6} \times 1.6 \times 10^{-19}=« 7.68 \times 10^{-14} \mathrm{~J} » \\ & \lambda=« \frac{h c}{E}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{7.68 \times 10^{-14}}=» 2.6 \times 10^{-12} « \mathrm{~m} » \end{aligned}$	Award [2] for a bald correct answer Allow ECF from incorrect energy	2
9.	e	i	line with arrow as shown labelled anti-neutrino $\bar{v} \checkmark$	Correct direction of the "arrow" is essential The line drawn must be "upwards" from the vertex in the time direction i.e. above the horizontal eg:	1
9.	e	ii	$V=W^{-} \checkmark$		1

