Question		Answers	Notes	Total
1.	a	links 0.84 to △ <i>p</i> ✓ $v = \ll \frac{0.84}{5.8 \times 10^{-2}} = 14.5 \ \text{wms}^{-1} \text{w} $ ✓	Award [2] for bald correct answer	2
1.	b	use of $\Delta t = \ll (28 - 12) \times 10^{-3} = \gg 16 \times 10^{-3} \ll s \gg \checkmark$ $\overline{F} = \ll \frac{\Delta p}{\Delta t} = \gg \frac{0.84}{16 \times 10^{-3}} \text{ OR } 53 \ll N \gg \checkmark$	Accept a time interval from 14 to 16 ms Allow ECF from incorrect time interval	2
1.	C	$E_{k} = \frac{1}{2} \times 5.8 \times 10^{-2} \times 14.5^{2} \checkmark$ $E_{k} = W \checkmark$ $s = \left(\frac{W}{F}\right) = \frac{\frac{1}{2} \times 5.8 \times 10^{-2} \times 14.5^{2}}{53} = 0.12 \text{ m} \checkmark$	Allow ECF from (a) and (b) Allow ECF from MP1 Award [2] max for a calculation without reference to work done, eg: average velocity × time	3

Question	Answers	Notes	Total
1. d	$v \int_{t} dt = \int_{t} d$		2

C	Questi	on	Answers	Notes	Total
1.	а	i	time taken $\frac{2.0 \times 10^4}{7}$ «= 2860 s» = 2900«s» \checkmark	Must see at least two s.f.	1
1.	а	ii	use of E = qV OR energy = $4.3 \times 10^4 \times 16 = 6.88 \times 10^5 \text{ J}$ \checkmark power = 241 «W» \checkmark	Accept 229 W – 241 W depending on the exact value of t used from ai. Must see at least three s.f.	2
1.	а	iii	use of power = force x speed OR force x distance = power x time \checkmark 34 «N» \checkmark	Accept 34 N – 36 N.	2
1.	b	i	66g sin(3°) = 34 «N» ✓		1
1.	b	ii	total force 34 + 34 = 68 «N» ✓ 3.5 «ms⁻¹»√	Look for ECF from aiii and bi. Accept 3.4 – 3.5 «ms ⁻¹ ». Award [0] for solutions involving use of KE.	2

Question		on	Answers	Notes	Total
1.	с		«maximum» distance will decrease OWTTE √		
			because opposing/resistive force has increased		
			OR		
			because more energy is transferred to GPE		
			OR		2
			because velocity has decreased		
			OR		
			increased mass means more work required «to move up the hill» \checkmark		
1.	d		4 V dropped across battery <i>OR</i> $R_{circuit} = 1.85 \Omega \checkmark$		
			so internal resistance $=\frac{4.0}{6.5}=0.62 \text{cm} \text{J}$		2
1.	е	i	$\frac{16}{5} = 3.2 \text{ eV} \text{ V} \text$		1
1.	е	ii	ALTERNATIVE 1:	Allow ECF from (d).	
			$2.5r = 0.62 \checkmark$		
			<i>r</i> = 0.25 «Ω» √		
			ALTERNATIVE 2:		2
			$\frac{0.62}{5} = 0.124 \text{«}\Omega\text{»} \checkmark$		
			<i>r</i> = 2(0.124)= 0.248 «Ω» ✓		

Question		on	Answers	Notes	Total
1.	а	i	$F = \frac{\Delta m v}{\Delta t} / m \frac{\Delta v}{\Delta t} / \frac{0.058 \times 64.0}{25 \times 10^{-3}} \checkmark$ F = 148 «N» ≈ 150 «N» ✓		2
1.	а	11	ALTERNATIVE 1 $P = \frac{\frac{1}{2}mv^{2}}{t} / \frac{\frac{1}{2} \times 0.058 \times 64.0^{2}}{25 \times 10^{-3}} \checkmark$ $P = 4700 / 4800 \text{ ww} \checkmark$ ALTERNATIVE 2 $P = \text{average } Fv / 148 \times \frac{64.0}{2} \checkmark$ $P = 4700 / 4800 \text{ ww} \checkmark$		2

Question		on	Answers	Notes	Total
1.	b	i	horizontal component of velocity is $64.0 \times \cos 7^\circ = 63.52 \text{ sm s}^{-1} \text{ s} \checkmark$ $t = \left(\frac{11.9}{63.52}\right) = 0.187 / 0.19 \text{ ss} \checkmark$		2
1.	b	ii	ALTERNATIVE 1 $u_y = 64 \sin 7 / 7.80 \text{ sm s}^{-1} \text{ s} \text{ s}$ decrease in height = $7.80 \times 0.187 + \frac{1}{2} \times 9.81 \times 0.187^2 / 1.63 \text{ sm} \text{ s} \text{ s}$ final height = $(2.80 - 1.63) = 1.1 / 1.2 \text{ sm} \text{ s} \text{ s}$ whigher than net so goes over ALTERNATIVE 2 vertical distance to fall to net $(2.80 - 0.91) = 1.89 \text{ sm} \text{ s} \text{ s}$ time to fall this distance found using $(1.89 = 7.8t + \frac{1}{2} \times 9.81 \times t^2)$ t = 0.21 ss s s (0.21 ss) > 0.187 ss s s		3

1.	b	iii	ALTERNATIVE 1	
			Initial KE + PE = final KE / $\frac{1}{2} \times 0.058 \times 64^2 + 0.058 \times 9.81 \times 2.80 = \frac{1}{2} \times 0.058 \times v^2 \checkmark$ $v = 64.4 \text{cm s}^{-1} \text{s} \checkmark$	2
			ALTERNATIVE 2 $v_v = (\sqrt{7.8^2 + 2 \times 9.81 \times 2.8}) = 10.8 \text{ sm s}^{-1} \text{ s} \text{ s}$ $(v = \sqrt{63.5^2 + 10.8^2}) \text{ s}$ $v = 64.4 \text{ sm}^{-1} \text{ s} \text{ s}$	
1.	С		so horizontal velocity component at lift off for clay is smaller ✓ normal force is the same so vertical component of velocity is the same ✓ so bounce angle on clay is greater ✓	3

Question		on	Answers	Notes	Total
1.	а		change in momentum each second = $6.6 \times 10^{-6} \times 5.2 \times 10^4$ «= 3.4×10^{-1} kg m s ⁻¹ » acceleration = « $\frac{3.4 \times 10^{-1}}{740}$ =» 4.6×10^{-4} «m s ⁻² »		2
1.	b	i	ALTERNATIVE 1: (considering the acceleration of the spacecraft) time for acceleration = $\frac{30}{6.6 \times 10^{-6}}$ = «4.6×10 ⁶ » «s» (max speed = «answer to (a) × 4.6×10 ⁶ =» 2.1×10 ³ «m s ⁻¹ » 		2
1.	b	ii	problem may be too complicated for exact treatment ✓to make equations/calculations simpler ✓when precision of the calculations is not important ✓some quantities in the problem may not be known exactly ✓		1 max

Question		on	Answers	Notes	Total	
1.	С	i	ions have same (sign of) charge ✔		ſ	
			ions repel each other √		2	
1.	с	ii	the forces between the ions do not affect the force on the spacecraft. \checkmark		C	
			there is no effect on the acceleration of the spacecraft. \checkmark		2	
1.	d	i	force per unit mass √			
			acting on a small/test/point mass «placed at the point in the field» \checkmark		2	
1.	d	ii	satellite has a much smaller mass/diameter/size than the planet «so approximates to a point mass» ✓		1	

Q	uestion	Answers	Notes	Total
3.	a	ALTERNATIVE 1:		
		initial momentum = $mv = \sqrt{2 \times 0.058 \times 0.63}$ « = 0.27 kg m s ⁻¹ »		
		OR		
		$mv = 0.058 \times \sqrt{2 \times 9.81 \times 1.1} \approx 0.27 \text{ kg m s}^{-1} \gg \checkmark$		
		force = « $\frac{\text{change in momentum}}{\text{time}}$ = » $\frac{0.27}{0.055}$		
		4.9 «N» ✓		
		<i>F−mg</i> =4.9 so <i>F</i> =5.5 «N» ✓		4
		ALTERNATIVE 2:		
		$ext{w}E_{k} = \frac{1}{2}mv^{2} = 0.63 \text{ J} \text{ w} \text{ v} = 4.7 \text{ m} \text{ s}^{-1} \text{ \checkmark}$		
		acceleration = $\ll \frac{\Delta v}{\Delta t} = \gg \frac{4.7}{55 \times 10^{-3}} = \ll 85 \text{ m s}^{-2} \gg \checkmark$		
		4.9 «N» ✓		
		<i>F−mg</i> =4.9 so <i>F</i> =5.5 «N» ✓		

Question		on	Answers	Notes	Total
3.	b		ALTERNATIVE 1:	Allow reverse argument for grass.	
			concrete reduces the stopping time/distance \checkmark		
			impulse/change in momentum same so force greater		
			OR		
			work done same so force greater ✔		2
			ALTERNATIVE 2:		
			concrete reduces the stopping time \checkmark		
			deceleration is greater so force is greater \checkmark		

C	uestic	on	Answers	Notes	Total
5.	а		0.40 «m s⁻¹» ✓		1
5.	b		initial energy 24 mJ and final energy 12 mJ ✓ energy is lost/unequal /change in energy is 12 mJ ✓ inelastic collisions occur when energy is lost ✓		3
5.	с		maximum GPE at extremes, minimum in centre \checkmark		1

Question		on	Answers	Notes	Total
1.	а		use of conservation of energy OR $v^2 = u^2 + 2as \checkmark$ $v = (\sqrt{2 \times 60.0 \times 9.81}) = 34.3 \text{ sms}^{-1} \checkmark \checkmark$		2
1.	b	i	use of impulse $F_{ave} \times \Delta t = \Delta p$ OR use of $F = ma$ with average acceleration OR $F = \frac{80.0 \times 34.3}{0.759} \checkmark$ $3620 \text{ «N» } \checkmark$	Allow ECF from (a).	2
1.	b	ii	upwards ✓ clearly longer than weight ✓	For second marking point allow ECF from (b)(i) providing line is upwards.	2
1.	b	iii	$3620 + 80.0 \times 9.81 \checkmark$ 4400 «N» \checkmark	Allow ECF from (b)(i).	2

1.	С	i	(loss in) gravitational potential energy (of block) into kinetic energy (of block) ✓	<u>Must</u> see names of energy (gravitational potential energy and kinetic energy) – Allow for reasonable variations of terminology (eg energy of motion for KE).	1
1.	с	ii	(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope \checkmark	See note for 1(c)(i) for naming convention.	
				<u>Must</u> see either the block or the rope (or both) mentioned in connection with the appropriate energies.	1
1.	d		k can be determined using EPE = $\frac{1}{2}kx^2$ \checkmark		
			correct statement or equation showing	Candidate must clearly indicate the energy associated with either position A or B for MP2.	2
			GPE at A = EPE at C		
			OR		
			(GPE + KE) at B = EPE at C ✓		

1.	e	i	$T = 2\pi \sqrt{\frac{80.0}{400}} = 2.81 \text{ (s)} \checkmark$ time = $\frac{T}{4} = 0.702 \text{ (s)} \checkmark$	Award [0] for kinematic solutions that assume a constant acceleration.	2
1.	e	ii	ALTERNATIVE 1 $\omega = \frac{2\pi}{2.81} = 2.24 \text{ wrad s}^{-1} \text{ w} \text{ \checkmark}$ $v = 2.24 \times 3.50 = 7.84 \text{ wms}^{-1} \text{ w} \text{ \checkmark}$ ALTERNATIVE 2 $\frac{1}{2}kx^{2} = \frac{1}{2}mv^{2} \text{ OR } \frac{1}{2}400 \times 3.5^{2} = \frac{1}{2}80v^{2} \text{ \checkmark}$ $v = 7.84 \text{ wms}^{-1} \text{ w} \text{ \checkmark}$	Award [0] for kinematic solutions that assume a constant acceleration. Allow ECF for T from (e)(i).	2

Question		on	Answers	Notes	Total
1.	а		arrow vertically downwards labelled weight «of sledge and/or girl»/ <i>W</i> /mg/gravitational force/ $F_g/F_{gravitational}$ AND arrow perpendicular to the snow slope labelled reaction force/ <i>R</i> /normal contact force/N/ $F_N \checkmark$	Do not allow G/g/"gravity".	
				Do not award MP1 if a "driving force" is included. Allow components of weight if correctly labelled. Ignore point of application or shape of object.	
				Ignore "air resistance".	2
				Ignore any reference to "push of feet on sledge".	
				Do not award MP2 for forces on sledge on horizontal ground	
				The arrows should contact the object	
1.	b		gravitational force/weight from the Earth «downwards» \checkmark	Allow naming of forces as in (a)	
			reaction force from the sledge/snow/ground «upwards» ✓		3
			no vertical acceleration/remains in contact with the ground/does not move vertically as there is no resultant vertical force \checkmark	Allow vertical forces are balanced/equal in magnitude/cancel out	
1.	С		mention of conservation of momentum	Allow $p = p'$ or other algebraically equivalent	
			OR	statement	
			$5.5 \times 4.2 = (55 + 5.5) \ll \vee \gg \checkmark$	Award [0] for answers based on energy	2
			0.38 «m s ^{−1} » ✓		

Question		on	Answers	Notes	Total
1.	d		same change in momentum/impulse 🗸		
			the time taken «to stop» would be greater «with the snow» \checkmark	Allow reverse argument for ice	
			$F = \frac{\Delta p}{\Delta t}$ therefore <i>F</i> is smaller «with the snow»		3
			OR		
			force is proportional to rate of change of momentum therefore F is smaller «with the snow» \checkmark		
1.	е	i	«friction force down slope» = $\mu mg \cos(6.5) = (5.9 \text{ N})$		
			«component of weight down slope» = $mg \sin(6.5) \approx 6.1$ N» \checkmark		
			«so $a = \frac{F}{m}$ » acceleration = $\frac{12}{5.5}$ = 2.2 «ms ⁻² » \checkmark	Ignore negative signs	3
				Allow use of $g = 10 m s^{-2}$	
1.	е	ii			
			correct use of kinematics equation ✓	Allow ECF from (e)(i)	
			distance = 4.4 <i>or</i> 4.0 «m» ✓		2
			Alternative 2		
			KE lost = work done against friction + GPE \checkmark	Allow [1 max] for GPE missing leading to 8.2 «m»	
			distance = 4.4 <i>or</i> 4.0 «m» ✓		

Question		on	Answers	Notes	Total
1.	f		calculates a maximum value for the frictional force = « μR =» 7.5 « N» \checkmark		
			sledge will not move as the maximum static friction force is greater than	Allow correct conclusion from incorrect MP1	2
		the component of weight down the slope ✓	Allow 7.5 > 6.1 so will not move		