Question			Answers	Notes	Total
3.	a	i	$v=« \frac{0.05}{0.20 \times 10^{-3}}=» 250 « \mathrm{~m} \mathrm{~s}^{-1} » \checkmark$		1
3.	a	ii	$\begin{aligned} & \lambda=0.30 « \mathrm{~m} » \\ & f=« \frac{250}{0.30}=» 830 « \mathrm{~Hz} » \end{aligned}$	Allow ECF from (a)(i) Allow ECF from wrong wavelength for MP2	2
3.	b		Q V acceleration is proportional to displacement «and Q has larger displacement» $\boldsymbol{\checkmark}$		2
3.	c	i	3 «points» \downarrow		1
3.	C	ii	first harmonic mode drawn \checkmark	Allow if only one curve drawn, either solid or dashed.	1

(Question 2 continued)

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 2. | c | models need testing/new information may change models/new technology
 may bring new information/Models can be revised/OWTTE \checkmark | $\mathbf{1}$ | |

3.	a	two waves superpose/mention of superposition/mention of «constructive» interference \checkmark they arrive in phase/there is a path length difference of an integer number of wavelengths \checkmark		2
3.	b	$\begin{aligned} & \text { path difference }=0.062 \text { «m» } \\ & \text { so wavelength }=0.031 \text { «m», } \\ & \text { frequency }=9.7 \times 10^{9} \text { «Hz» } \end{aligned}$	Award [2 max] for $4.8 \times 10^{9} \mathrm{~Hz}$.	3
3.	C	intensity is modulated by a single slit diffraction envelope $O R$ intensity varies with distance $O \boldsymbol{O R}$ points are different distances from the slits $\boldsymbol{\checkmark}$		1

(Question 3 continued)

Question			Answers	Notes	Total
3.	a		Expression or statement showing acceleration is proportional to displacement $\sqrt{ }$ $\text { so «7.9 } \frac{2.3}{3.2} »=5.7<\mathrm{ms}^{-2} » \checkmark$		2
3.	b		$\begin{aligned} & \sin \theta=\frac{340}{6010} \times \sin 54^{\circ} \\ & \theta=2.6^{\circ} \end{aligned}$		2
3.	c		$\lambda=« \frac{340}{250}=» 1.36 \approx 1.4 « \mathrm{~m}$ 》 \checkmark		1
3.	d	i	horizontal arrow «at M» pointing left \checkmark		1
3.	d	ii	any point labelled C on the vertical line shown below \checkmark eg: displacement to the right displacement to the left		1

(continued...)
(Question 3 continued)

Question			Answers	Total	
3.	e	i	$f^{\prime}=2500 \times \frac{340}{340+280} \checkmark$		
3.	e	ii	$\lambda^{\prime}=\frac{340}{1371} \approx 0.24 / 0.25 « \mathrm{~m} » \checkmark$		

Question			Answers	Notes	Total
4.	a		«air molecule» moves to the right and then back to the left \checkmark returns to X/original position \checkmark		2
4.	b		wavelength $=2 \times 1.4$ « $=2.8 \mathrm{~m}$ » \downarrow $c=« f \lambda=» 120 \times 2.8 «=340 \mathrm{~m} \mathrm{~s}^{-1} » \checkmark$ $K=« \rho c^{2}=1.3 \times 340^{2}=» 1.5 \times 10^{5} \checkmark$		3
4.	C	i	construction showing formation of image \checkmark	Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.	1
4.	C	ii	interference pattern is observed OR interference/superposition mentioned \checkmark maximum when two waves occur in phase/path difference is $n \lambda$ OR minimum when two waves occur 180° out of phase/path difference is $(n+1 / 2) \lambda \checkmark$		2

3.	a	i	superposition of light from each slit / interference of light from both slits \checkmark with path/phase difference of any half-odd multiple of wavelength/any odd multiple of π (in words or symbols) \checkmark producing destructive interference \checkmark	Ignore any reference to crests and troughs.	3
3.	a	ii	light waves (from slits) must have constant phase difference / no phase difference / be in phase \checkmark	OWTTE	1
3.	a	iii	evidence of solving for $D « D=\frac{s d}{\lambda} » \checkmark$ $« \frac{4.50 \times 10^{-3} \times 0.300 \times 10^{-3}}{633.0 \times 10^{-9}} \times 2 »=4.27 « \mathrm{~m} »$	Award [1] max for 2.13 m .	2

(continued...)
(Question 3 continued)

3.	b	i	$\begin{aligned} & \sin \theta=\frac{4 \times 633.0 \times 10^{-9}}{0.300 \times 10^{-3}} \\ & \theta=0.0084401 \ldots \end{aligned}$ final answer to three sig figs (eg 0.00844 or 8.44×10^{-3}) \checkmark	Allow ECF from (a)(iii). Award [1] for 0.121 rad (can award MP3 in addition for proper sig fig) Accept calculation in degrees leading to 0.481 degrees. Award MP3 for any answer expressed to $3 s f$.	3
3.	b	ii	use of diffraction formula « $b=\frac{\lambda}{\theta}$ » OR $\frac{633.0 \times 10^{-9}}{0.00844}$ $\text { «=» } 7.5 « 00 » \times 10^{-2} \text { «mm» }$	Allow ECF from (b)(i).	2

(continued...)
(Question 3 continued)

3.	c		wavelength increases (so frequency decreases) / light is redshifted \checkmark galaxy is moving away from Earth \checkmark	Allow ECF for MP2 (ie wavelength decreases so moving towards).	
$\mathbf{3 .}$	d	\mathbf{i}	$\frac{633.0}{1.33}=476$ «nm» \checkmark	$\mathbf{1}$	
$\mathbf{3 .}$	d	ii	distance between peaks decreases \checkmark intensity decreases \checkmark	$\mathbf{2}$	

3.	a	i	the incident wave «from the speaker» and the reflected wave «from the closed end» superpose/combine/interfere \checkmark	Allow superimpose/add up Do not allow meet/interact	1
3.	a	ii	Horizontal arrow from X to the right \checkmark	MP2 is dependent on MP1 Ignore length of arrow	1
3.	a	iii	P at a node \checkmark		1
3.	a	iv	wavelength is $\lambda=« \frac{4 \times 0.30}{3}=» 0.40 « \mathrm{~m} » \checkmark$ $f=« \frac{340}{0.40}=» 850 « \mathrm{~Hz} » \downarrow$	Award [2] for a bald correct answer Allow ECF from MP1	2
3.	b	i	$\begin{aligned} & \frac{\sin \theta_{C}}{340}=\frac{1}{1500} \\ & \theta_{C}=13 «^{\circ} » \checkmark \end{aligned}$	Award [2] for a bald correct answer Award [2] for a bald answer of 13.1 Answer must be to $2 / 3$ significant figures to award MP2 Allow 0.23 radians	2
3.	b	ii	correct orientation \checkmark greater separation \checkmark	Do not penalize the lengths of A and B in the water Do not penalize a wavefront for C if it is consistent with A and B MP1 must be awarded for MP2 to be awarded eg:	2

Question			Answers	Notes	Total
4.	a	i	$\begin{aligned} & « v=c \frac{\sin i}{\sin r}=» \frac{3 \times 10^{8} \times \sin (33)}{\sin (46)} \\ & 2.3 \times 10^{8}<\mathrm{ms}^{-1} » \end{aligned}$		2
4.	a	ii	light strikes $A B$ at an angle of 57° critical angle is $« \sin ^{-1}\left(\frac{2.3}{3}\right)=» 50.1^{\circ}$ angle of incidence is greater than critical angle so total internal reflection OR light strikes $A B$ at an angle of 57° calculation showing sin of "refracted angle" $=1.1 \checkmark$ statement that since $1.1>1$ the angle does not exist and the light does not emerge \checkmark	$49.2{ }^{\circ}$ from unrounded value	3 max
4.	a	iii	total internal reflection shown ray emerges at opposite face to incidence \checkmark	Judge angle of incidence = angle of reflection by eye or accept correctly labelled angles With sensible refraction in correct direction	2

(continued...)

