Question		on	Answers	Notes	Total
4.	а		<pre>magnetic force is to the left «at the instant shown» OR explains a rule to determine the direction of the magnetic force ✓ force is perpendicular to velocity/«direction of» motion OR force is constant in magnitude ✓ force is centripetal/towards the centre ✓</pre>	Accept reference to acceleration instead of force.	2 max
4.	b	i	$qvB = \frac{mv^2}{R} \checkmark$ $R = \frac{1.67 \times 10^{-27} \times 2.0 \times 10^6}{1.6 \times 10^{-19} \times 0.35} \text{ OR } 0.060 \text{ wm} \text{ m}$	Award MP2 for full replacement or correct answer to at least 2 significant figures.	2
4.	b	ii	$T = \frac{2\pi R}{v} \checkmark \qquad \text{Higher level only}$ $T = \left(\frac{2\pi \times 0.06}{2.0 \times 10^6}\right) = 1.9 \times 10^{-7} \text{ (s)} \checkmark$	Award [2] for bald correct answer	2
4.	C		ALTERNATIVE 1 Higher level only work done by force is change in kinetic energy ✓ work done is zero/force perpendicular to velocity ✓ ALTERNATIVE 2 proton moves at constant speed ✓ kinetic energy depends on speed ✓	Award [2] for a reference to work done is zero hence <i>E_k</i> remains constant Accept mention of speed or velocity indistinctly in <i>MP</i> 2	2

5.	а		out of the page plane / \odot \checkmark	Do not accept just "up" or "outwards".	1
5.	b		$1.60 \times 10^{-19} \times 6.8 \times 10^5 \times 8.5 = 9.2 \times 10^{-13} \text{ eV}$		1
5.	с	i	the magnetic force does not do work on the electron hence does not change the electron's kinetic energy <i>OR</i> the magnetic force/acceleration is at right angles to velocity √		1
5.	С	ii	the velocity of the electron is at right angles to the magnetic field \checkmark (therefore) there is a centripetal acceleration / force acting on the charge \checkmark	OWTTE	2

(Question 2 continued)

Question		on	Answers	Notes	Total
2.	b	ii	to stop Y from getting ahead ✓		
			to remain stationary with respect to X \checkmark		2 max
			otherwise will add tension to cable/damage satellite/pull X out of its orbit \checkmark		
2.	С			Marks should be awarded from either one alternative or the other.	
			cable is a conductor and contains electrons \checkmark		
			electrons/charges experience a force when moving in a magnetic field \checkmark		
			use of a suitable hand rule to show that satellite Y becomes negative «so X becomes positive» \checkmark	Do not allow discussion of positive charges moving towards X	3
			Alternative 2		
			cable is a conductor ✓		
			so current will flow by induction flow when it moves through a B field \checkmark		
			use of a suitable hand rule to show current to right so «X becomes positive» \checkmark		
2.	d		electrons would build up at satellite Y/positive charge at X \checkmark		
			preventing further charge flow 🗸		3 may
			by electrostatic repulsion ✓		JIIIdX
			unless a complete circuit exists ✓		
2.	е		$\ll \varepsilon = B/v = \gg 31 \times 10^{-6} \times 7790 \times 15000 \checkmark$		
			3600 «V» ✓	Allow 3700 «V» from v = 8000 ms ⁻¹ .	2
L					

(continued...)