1)

(i)1	d sin $\theta = \lambda$ d sin $11.4^{\circ} = 6.56 \times 10^{-7}$ d = $6.56 \times 10^{-7}/0.198$ d = 3.3×10^{-6} (m)	C1 C1 A1	choosing formula and substitution manipulation and sin 11.4° = 0.198
(i)2	$1/d = 3 \times 10^5 \mathrm{m}^{-1} = 300 \mathrm{mm}^{-1}$	A1	ecf b(i)1; allow 301 or 302 as data given to 3 sig figs
(ii)	2 rays, one either side of normal to grating at about 8°, say	B1	accept any sensible angle

2)

(i)	3 correct labels	B1	
(ii)	the (three) colours add up/superpose to give white light or no dispersion/diffraction of incident white light/AW	B1	allow use of formula d sin θ = nλ so constructive interference at θ = 0 for all λ
(iii)	select $\lambda = d \sin \theta$ $\lambda = 1.67 \times 10^{-6} \sin 19.1$ $\lambda = 546 \times 10^{-9} (m)$	C1 C1 A1	allow 547 x 10 ⁻⁹ as answer is 546.46 x 10 ⁻⁹ do not allow 550 x 10 ⁻⁹ unless SF mark already deducted

3)

(a)	(i)	line spacing d = 1/(300 x 1000) (= 3.3 x 10 ⁻⁶ (m))	B1	look for clear reasoning to award mark
	(ii)	$\sin \theta = \lambda/d$	C1	
		$= 6.3 \times 10^{-7}/3.3 \times 10^{-6} = 0.19$	C1	rounding error of 0.2 here gives 11.9°
		θ = 11 degrees	A1	11.9° gets 2 marks
	(iii)	spots can be seen where $n = d \sin \theta / \lambda$	B1	accept basic idea of orders for first mark
		maximum n when $\sin \theta = 1$ (giving n = 5.3) so n = 5 can be seen	B1	N.B. calculation not necessary
		thus 5 spots on either side of straight through + straight through = 11	B1	
(b)	(i)	$\varepsilon = hc/\lambda = 6.6 \times 10^{-34} \times 3.0 \times 10^{8}/6.3 \times 10^{-7}$	C1	
		$= 3.14 \times 10^{-19} (J)$	A1	accept 3.2 x 10 ⁻¹⁹ (J)
	(ii)	5.0 x 10 ⁻⁴ /3.14 x 10 ⁻¹⁹	C1	ecf from b(i)1
		$= 1.6 \times 10^{15}$	A1	
c)	(i)	Electrons behave as waves/have a wavelength	B1	
				max 2 out of next 4 marking points
		diffraction observable because gaps/atoms are similar to wavelength of	B1	can gain first 'waves' mark here as well as
		electrons		second mark if first line not written explicitly
		regular pattern of atoms acts as a grating	B1	
		allowing constructive interference to produce pattern on screen/AW	B1	
		rings occur because atomic 'crystals' at all possible orientations to beam/AW	B1	
	(ii) 1	$\lambda = h/mv = 6.63 \times 10^{-34}/9.1 \times 10^{-31}v$	C1	
	. ,	$v = 6.63 \times 10^{-34}/9.1 \times 10^{-31} \times 5.0 \times 10^{-11}$		
		$v = 1.5 \times 10^7 \text{ (m s}^{-1)}$	A1	using 6.6 instead of 6.63 gives 1.45 x 10 ⁷
	2	$1/_2$ mv ² = eV	C1	
		$\frac{1}{2} \times 9.1 \times 10^{-31} \times 2.25 \times 10^{14} = 1.6 \times 10^{-19} \text{V}$	C1	
		$V = 6.4 \times 10^2 (V)$	A1	using v =1.45 x 10 ⁷ gives 600 V
		Total question 6	19	

4)

а		All of the rays/wavefronts/waves are added together (at each point on the screen) when the path difference is an exact number of wavelengths the rays/waves interfere constructively giving maximum amplitude/intensity (at all other angles) when the path difference between rays is not an exact number of wavelengths the rays/waves interfere destructively/cancel out	B1 B1 B1 B1 B1	max 4 marks to include the second marking point NOT superpose or interfere for added as in stem of Q allow nλ QWC mark allow bright line/light NOT bright fringes nor maxima NOT when the path difference is (2n +1)λ/2 there is destructive interference/AW
		giving a dark background/little to no intensity		allow suitable annotation of diagram to score marks
b	i 1	two lines between 5 and 15 degrees (judge by eye)	B1	allow with label C missing; actual value is 12.5°
	i 2	select $n\lambda = d \sin \theta$ $579 \times 10^{-9} = d \sin 20 = 0.342 d$ $d = 1.7 \times 10^{-6} (m)$	C1 C1 A1	allow n = 1 in initial equation allow 1.69 x 10 ⁻⁶
	ii	E	B1	
	iii	D,E	B1	