1)

Q	Question		Expected Answers		Additional Guidance
]				
	а		resistors in series add to 20 Ω and current is 0.60 A	B1	accept potential divider stated or formula
			so p.d. across XY is 0.60 x 12 (= 7.2 V)	B1	gives (12 /20) x 12 V (= 7.2)V
	b	i	the resistance of the LDR decreases	M1	
			(so total resistance in circuit decreases) and current increases	A1	
		ii	resistance of LDR and 12 Ω (in parallel)/across XY decreases	B1	alternative I increases so p.d. across 8.0 Ω
			so has smaller share of supply p.d. (and p.d. across XY falls)	B1	increases; so p.d. across XY falls
			Total question 3	6	

2)

		Total question 3	15	
	(ii)	upward curve below straight line through origin labelled T passing through 0.06,12	B1 B1	
(c)	(ii)	straight line through origin labelled R passing through 0.06,12	B1 B1	allow correct lines with no labels
	(ii)	voltages are equal so resistances are equal	B1	
(b)	(i)	the thermistor has heated up/ its temperature has increased so its resistance has dropped so the ratio of the voltages across the potential divider changes/AW	B1 M1 A1	accept so the current increases accept so IR of fixed resistor increases
	(iv)	$P = VI = I^2R = V^2/R$ P = 0.640 (W)	C1 A1	ecf from (i) & (ii) accept 640 mW
	(iii)	$R = 16/0.04$ giving $R = 400 (\Omega)$	C1 A1	accept ratio of p.d.s to ratio of Rs ecf from (i) & (ii) ie (a)(ii)/(a)(i)
	(ii)	V = 24 - 8 = 16 (V)	B1	
(a)	(i)	I = V/R = 8.0/200 I = 0.040 (A)	C1 A1	

3)

а		resistance decreases with increase in light intensity	B1	ora
b			B1	7.1
В	ii	3.0 (V)	_	accept 3 V, no SF error
	"	$3.0 = 1.1.2 \times 10^3$ giving	C1	accept 6 = (R/R + 1.2 k).9
		$I = 2.5 \times 10^{-3} A$	C1	2R + 2.4 k = 3R or similar
		$6.0 / 2.5 \cdot 10^{-3} = R = 2400 \Omega$ $2.4 k\Omega$	A1	R = 2.4 k ; give 2 with POT error
				accept ratio of resistors 6/3 x 1.2
				good candidates can do this by inspection with
				no working – full marks
				allow 2400 written on answer line rather than
				2.4 if 2400 Ω within body of text
	iii	49 or 50 (W m ⁻²)	B1	ecf (b)(ii) if on R within graph range
С	i	2.2 (kΩ)	B1	allow any value from 2.1 to 2.2
	ii	large(r) changes in R at low light intensities	B1	allow greater sensitivity of LDR at low light or
				steeper gradient/AW
		relating change in R to change in V	B1	e.g. bigger change in I so in V
				or use of V = R/(R + 1200) V _s
				or bigger change in V ratio across Rs
d		V across 1.2 kΩ falls	B1	alternative I increases
		so V across LDR rises	B1	because total R is less
		because ratio of Rs changes in favour of LDR/ potential divider	B1	so V across LDR rises
		argument or total V is constant		do not award B marks where there is CON e.g.
				V across 1.2 k rises so V across LDR rises
е		continuous record for very long time scale of observation	B1	allow any two sensible suggestions which fall
		can record very short time scale signals (at intervals)	B1	within the 4 categories listed for 2 marks
		automatic recording/remote sensing		
		data can be fed directly to computer (for analysis)		
		Total question 4	14	

4)

(a)		R of thermistor decreases as temperature increases	B1	accept more free e's as temperature rises
		supply V is constant/ total R is smaller	B1	using I = nAev
		current increases as V = IR/AW	B1	current increases as v decrease very small/AW
(b)		R _{th} = 40 Ω at 240 °C (stated or used in calculation)	B1	apply ecf if wrong value of R read from graph
' '		total R in circuit = 240 Ω	C1	
		I = 6/240 = 0.025 A	C1	allow V = (200/240)6
		V = 200 x 0.025 = 5.0 V	A1	so V = 5.0 V accept 5 V (no SF error)
		V = 200 X 0.020 = 0.0 V	Α.	So v = 0.5 v doopt o v (no or onor)
(c)	(i)	correct symbol for LDR	B1	no circle required
()	(-,	30.100(0),		In the short required
	(ii)	R of LDR decreases/current in circuit increases	M1	
	(,			
		so V increases across fixed/200 Ω resistor/AW	A1	accept simple potential divider argument
				accept voltmeter reading increases
		Total	10	

5)

а	i	V is not proportional to I	B1	accept not a straight line; R is not constant
	ii	R (approximately) constant up to V = 0.5 V and I = 50 mA	B1	allow graph is (almost) linear/straight (to V = 0.5 V) or constant gradient
		so R = 0.5/0.05 = 10 (Ω)	В1	allow any correct calculation, e.g. 0.2/0.02
	iii	the resistivity/resistance of the (metal) filament increases with temperature the larger the current in the filament the hotter it becomes/AW	B1 B1	larger current heats filament so resistance increases or electron-ion collisions increase/AW; allow atom for ion
b		Any potential divider argument or calculation In the light parallel combination less than or about 1 Ω /AW so V across lamp less than 0.5 V (so lamp out)/ small compared to V across 25 Ω	B1 B1 B1	QWC the arguments must be clear for full marks allow R_{lamp} = 10 to 25 Ω for any calculation or comparison of voltage across 25 Ω to 1 Ω N.B. answers given in terms of current are likely to score zero
		In the dark parallel combination about 25 Ω/AW so V across lamp approximately 6.0 V so lamp on	B1 B1	
		Total	10	