5d. Physics A data sheet

Data, Formulae and Relationships

The data, formulae and relationships in this data sheet will be printed for distribution with the examination papers.

Data

Values are given to three significant figures, except where more - or fewer - are useful.

Physical constants

acceleration of free fall
elementary charge
speed of light in a vacuum
Planck constant
Avogadro constant
molar gas constant
Boltzmann constant
gravitational constant
permittivity of free space
electron rest mass
proton rest mass
neutron rest mass
alpha particle rest mass
Stefan constant
g
e
c
h
$N_{\text {A }}$

R
k

G
ε_{0}
$m_{\mathrm{e}} \quad 9.11 \times 10^{-31} \mathrm{~kg}$
m_{p}
m_{n}
m_{α} σ
$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
$1.60 \times 10^{-19} \mathrm{C}$
$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$1.673 \times 10^{-27} \mathrm{~kg}$
$1.675 \times 10^{-27} \mathrm{~kg}$
$6.646 \times 10^{-27} \mathrm{~kg}$
$5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\left(\mathrm{~F} \mathrm{~m}^{-1}\right)$

Quarks

up quark
down quark
strange quark
charge $=+\frac{2}{3} e$
charge $=-\frac{1}{3} e$
charge $=-\frac{1}{3} e$

Conversion factors

unified atomic mass unit
electronvolt
day
year
light year
parsec
$1 \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
1 day $=8.64 \times 10^{4} \mathrm{~s}$
1 year $\approx 3.16 \times 10^{7} s$
1 light year $\approx 9.5 \times 10^{15} \mathrm{~m}$
1 parsec $\approx 3.1 \times 10^{16} \mathrm{~m}$

Mathematical equations

arc length $=r \theta$
circumference of circle $=2 \pi r$
area of circle $=\pi r^{2}$
curved surface area of cylinder $=2 \pi r h$
surface area of sphere $=4 \pi r^{2}$
area of trapezium $=\frac{1}{2}(a+b) h$
volume of cylinder $=\pi r^{2} h$
volume of sphere $=\frac{4}{3} \pi r^{3}$
Pythagoras' theorem: $a^{2}=b^{2}+c^{2}$
cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\sin \theta \approx \tan \theta \approx \theta$ and $\cos \theta \approx 1$ for small angles
$\log (A B)=\log (A)+\log (B)$
(Note: $\lg =\log _{10}$ and $\ln =\log _{\mathrm{e}}$)
$\log \left(\frac{A}{B}\right)=\log (A)-\log (B)$
$\log \left(x^{n}\right)=n \log (x)$
$\ln \left(\mathrm{e}^{k x}\right)=k x$

Formulae and relationships

Module 2 - Foundations of physics

vectors | $F_{\mathrm{x}}=F \cos \theta$ |
| :--- |
| $F_{\mathrm{y}}=F \sin \theta$ |

Module 3 - Forces and motion

uniformly accelerated motion	$\begin{aligned} & v=u+a t \\ & s=\frac{1}{2}(u+v) t \\ & s=u t+\frac{1}{2} a t^{2} \\ & v^{2}=u^{2}+2 a s \end{aligned}$
force	$\begin{aligned} F & =\frac{\Delta p}{\Delta t} \\ p & =m v \end{aligned}$
turning effects	$\begin{aligned} & \text { moment }=F x \\ & \text { torque }=F d \end{aligned}$
density	$p=\frac{m}{V}$
pressure	$\begin{aligned} & p=\frac{F}{A} \\ & p=h \rho g \end{aligned}$
work, energy and power	$\begin{aligned} & W=F x \cos \theta \\ & \text { efficiency }=\frac{\text { useful energy output }}{\text { total energy input }} \times 100 \% \\ & P=\frac{W}{t} \\ & P=F V \end{aligned}$
springs and materials	$\begin{aligned} & F=k x \\ & E=\frac{1}{2} F x ; E=\frac{1}{2} k x^{2} \\ & \sigma=\frac{F}{A} \\ & \varepsilon=\frac{x}{L} \\ & E=\frac{\sigma}{\varepsilon} \end{aligned}$

Module 4 - Electrons, waves and photons

charge	$\Delta Q=I \Delta t$
current	$I=$ Anev
work done	$W=V Q ; W=\mathcal{E} Q ; W=V I t$
resistance and resistors	$\begin{aligned} & R=\frac{\rho L}{A} \\ & R=R_{1}+R_{2}+\ldots \\ & \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \end{aligned}$
power	$P=V I, P=I^{2} R \text { and } P=\frac{V^{2}}{R}$
internal resistance	$\mathcal{E}=I(R+r) ; \mathcal{E}=V+I r$
potential divider	$\begin{aligned} & V_{\text {out }}=\frac{R}{R_{1}+R_{2}} \times V_{\text {in }} \\ & \frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}} \end{aligned}$
waves	$\begin{aligned} & v=f \lambda \\ & f=\frac{1}{T} \\ & I=\frac{P}{A} \\ & \lambda=\frac{a x}{D} \end{aligned}$
refraction	$\begin{aligned} & n=\frac{c}{v} \\ & n \sin \theta=\text { constant } \\ & \sin C=\frac{1}{n} \end{aligned}$
quantum physics	$\begin{aligned} & E=h f \quad E=\frac{h c}{\lambda} \\ & h f=\phi+K E_{\max } \\ & \lambda=\frac{h}{p} \end{aligned}$

$\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}$
$f=\frac{1}{T}$
$I=\frac{P}{A}$
$\lambda=\frac{a x}{D}$
$n=\frac{c}{v}$
$n \sin \theta=$ constant
$\sin C=\frac{1}{n}$
$E=h f \quad E=\frac{h c}{\lambda}$
$h f=\phi+K E_{\text {max }}$
$\lambda=\frac{h}{p}$

Module 5 - Newtonian world and astrophysics

thermal physics	$E=m c \Delta \theta$ $E$$=m L$
ideal gases	$p V=N k T ; p V=n R T$
$p V=\frac{1}{3} N m c^{2}$	
$\frac{1}{2} m c^{2}=\frac{3}{2} k T$	
E	$=\frac{3}{2} k T$

oscillations
$\omega=\frac{2 \pi}{T} ; \omega=2 \pi f$
$a=-\omega^{2} x$
$x=A \cos \omega t ; x=A \sin \omega t$
$v= \pm \omega \sqrt{A^{2}-x^{2}}$
gravitational field
$g=\frac{F}{m}$
$F=-\frac{G M m}{r^{2}}$
$g=-\frac{G M}{r^{2}}$
$T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3}$
$V_{\mathrm{g}}=-\frac{G M}{r}$
energy $=-\frac{G M m}{r}$
astrophysics
$h f=\Delta E ; \frac{h c}{\lambda}=\Delta E$
$d \sin \theta=n \lambda$
$\lambda_{\text {max }} \propto \frac{1}{T}$
$L=4 \pi r^{2} \sigma T^{4}$
cosmology

$$
\begin{aligned}
& \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c} \\
& p=\frac{1}{d} \\
& v=H_{0} d \\
& t=H_{0}^{-1}
\end{aligned}
$$

Module 6 - Particles and medical physics

$$
\begin{aligned}
& \text { capacitance and capacitors } \\
& \qquad \begin{aligned}
C & =\frac{Q}{V} \\
C & =\frac{\varepsilon_{0} A}{d} \\
C & =4 \pi \varepsilon_{0} R \\
C & =C_{1}+C_{2}+\ldots \\
\frac{1}{C} & =\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots . \\
W & =\frac{1}{2} Q V ; W=\frac{1}{2} \frac{Q^{2}}{C} ; W=\frac{1}{2} V^{2} C \\
\tau & =C R \\
x & =x_{0} e^{-\frac{t}{C R}} \\
x & =x_{0}\left(1-e^{-\frac{t}{c R}}\right)
\end{aligned}
\end{aligned}
$$

electric field

electromagnetism	$\begin{aligned} & \phi=B A \cos \theta \\ & \varepsilon=-\frac{\Delta(N \phi)}{\Delta t} \\ & \frac{n_{\mathrm{s}}}{n_{p}}=\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}}=\frac{I_{\mathrm{p}}}{I_{\mathrm{s}}} \end{aligned}$
radius of nucleus	$R=r_{0} A^{\frac{1}{3}}$
radioactivity	$\begin{aligned} & A=\lambda N ; \frac{\Delta N}{\Delta t}=-\lambda N \\ & \lambda t \frac{1}{2}=\ln (2) \\ & A=A_{0} \mathrm{e}^{-\lambda t} \\ & N=N_{0} \mathrm{e}^{-\lambda t} \end{aligned}$
Einstein's mass-energy equation	$\Delta E=\Delta m c^{2}$
attenuation of X-rays	$I=I_{0} \mathrm{e}^{-\mu x}$
ultrasound	$\begin{aligned} & Z=\rho c \\ & \frac{I_{r}}{I_{0}}=\frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}} \\ & \frac{\Delta f}{f}=\frac{2 v \cos \theta}{c} \end{aligned}$

