1) | (a) | Write an equation for resistivity ρ of a material in terms of the length L of a conductor, its cross-sectional area A and its resistance R . | |-----|---| | | | | | [1] | **(b)** Fig. 4.1 shows a cube made from a material of resistivity ρ . Fig. 4.1 Determine the resistance between any two opposite faces of the cube in terms of the resistivity ρ . resistance =[2] - (c) A metal rod has volume $1.6\times10^{-5}\,\text{m}^3$, length $5.3\times10^{-2}\,\text{m}$ and resistance $7.8\times10^{-5}\,\Omega$. - (i) Show that the cross-sectional area of the rod is $3.0 \times 10^{-4} \, \text{m}^2$. [1] (ii) Calculate the resistivity of the metal. | | resistivity = Ω m [2] | |-----|--| | (d) | State and explain how your answer to (c)(ii) would change, if at all, when the volume of the metal rod is halved but the length is kept the same. | | | | | | | | | | | | [Total: 8 | 2) A student wishes to measure the resistivity of glass. A teacher suggests that its resistivity is of the order of $10^6 \Omega$ m which is very large. Resistivity ρ is defined by the equation $$\rho = \frac{RA}{l}$$ where R is resistance, A is cross-sectional area and l is the length of the material. The student is given a number of sheets of glass of the same thickness and of different areas. Design a laboratory experiment to determine the resistivity of glass. You should draw a diagram showing the arrangement of your equipment. In your account you should pay particular attention to - (a) the procedure to be followed, - (b) how the glass would be connected to the circuit, - (c) the measurements that would be taken, - (d) the control of variables, - (e) how the data would be analysed, - **(f)** any safety precautions that you would take. [15] 3) A student is asked to determine the resistivity of iron using a length of iron wire. Describe an experiment which could be carried out to achieve this. ## Include - · a statement of the measurements to be taken, - a list of the apparatus required, - · a diagram of the apparatus, - · an explanation of how the measurements will be used to determine the resistivity, - one precaution the student should take to improve the accuracy of the result. (7) A student wishes to measure the resistivity of glass. A teacher suggests that its resistivity is of the order of $10^6 \Omega$ m which is very large. Resistivity ρ is defined by the equation $$\rho = \frac{RA}{l}$$ where R is resistance, A is cross-sectional area and l is the length of the material. The student is given a number of sheets of glass of the same thickness and of different areas. Design a laboratory experiment to determine the resistivity of glass. You should draw a diagram showing the arrangement of your equipment. In your account you should pay particular attention to - (a) the procedure to be followed, - **(b)** how the glass would be connected to the circuit, - (c) the measurements that would be taken, - (d) the control of variables, - (e) how the data would be analysed, - (f) any safety precautions that you would take. [15] 5 A student wishes to determine the resistivity of aluminium. The resistivity ρ of a conductor is defined as $$\rho = \frac{RA}{l}$$ for a conductor of resistance R, cross-sectional area A and length L Fig. 1.1 shows the typical dimensions of a strip of aluminium of lengths c, d and t. The resistivity of aluminium is about $10^{-8} \Omega m$. Fig. 1.1 (not to scale) Design a laboratory experiment to determine the resistivity of aluminium using this strip. The usual apparatus of a school laboratory is available, including a metal cutter. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to - (a) the procedure to be followed, - (b) the measurements to be taken, - (c) the control of variables, - (d) the analysis of the data, - (e) the safety precautions to be taken. [15] ## This question requires practial equipment. - 6 In this experiment, you will determine the resistivity of a metal in the form of a wire. - (a) (i) Measure and record the diameter *d* of the short sample of wire that is attached to the card. You may remove the wire from the card. (ii) Calculate the cross-sectional area A of the wire, in m², using the formula $$A=\frac{\pi d^2}{4}.$$ $$A = \dots m^2$$ (b) (i) Using the wire attached to the metre rule, set up the circuit shown in Fig. 1.1. Fig. 1.1 There are two crocodile clips labelled P and Q. P will remain in the same position throughout the experiment. Q can be moved to different positions along the wire. | (ii) | Position the slider approximately half-way along the rheostat (variable resistor). | |---------|---| | (iii) | Attach Q approximately half-way along the wire. | | (iv) | Switch on the power supply. | | (v) | Measure and record the length $\it l$ of wire between P and Q. Record the voltmeter reading $\it V$. | | | <i>l</i> = m | | | V =V | | (vi) | Record the ammeter reading I .
(1 mA = 0.001 A) | | | <i>I</i> = A | | (vii) | Switch off the power supply. | | (c) (i) | Reposition Q at a new distance <i>l</i> from P. | | (ii) | Switch on the power supply. | | (iii) | Adjust the slider on the rheostat until the ammeter reading is the same value as in (b)(vi) . | | (iv) | Measure and record the length $\it l$ of wire between P and Q. Record the voltmeter reading $\it V$. | | | <i>l</i> = m | | | V =V | | (v) | Switch off the power supply. | | | | 4 | (d) | Rep | beat (c) until you have six sets of readings of l and V . | | |-----|-------|--|--| | | | each value of $\it l$, adjust the slider on the rheostat so that the ammeter reading emains constant at the value in (b)(vi). | | | | You | may find it helpful to copy your value from (b)(vi) here. | | | | | I= | | | | Incl | ude values of $\frac{V}{l}$ and $\frac{1}{l}$ in your table. | [10] | | | (e) | (i) | Plot a graph of $\frac{V}{I}$ on the <i>y</i> -axis against $\frac{1}{I}$ on the <i>x</i> -axis. [3] | | | | (ii) | Draw the straight line of best fit. [1] | | | (| (iii) | Determine the gradient and <i>y</i> -intercept of this line. | gradient = | | | | | <i>y</i> -intercept =[2] | | | (f) | The quantities | V and l | are related | by the equation | |-----|----------------|---------|-------------|-----------------| $$\frac{V}{l} = \frac{M}{l} - N$$ where *M* and *N* are constants. | (i) | Use your answers | in (e)(iii) to | determine | values f | or <i>M</i> and <i>N</i> | |-----|------------------|----------------|-----------|----------|--------------------------| |-----|------------------|----------------|-----------|----------|--------------------------| (ii) The resistivity ρ of the material of the wire, in Ω m, can be found using the relationship $$\rho = \frac{NA}{I}.$$ Using your answers in (a)(ii), (b)(vi) and (f)(i), calculate a value for ρ . ρ = Ω m [1] ## Tis question requires practical equipment - 7 In this experiment, you will determine the resistivity of a metal in the form of a wire. - (a) (i) Measure and record the diameter *d* of the short sample of wire that is attached to the card. You may remove the wire from the card. | d | = |
 |
 |
 |
 | | | | | |
 | | | | |---|---|------|------|------|------|--|--|--|--|--|------|--|--|--| (ii) Calculate the cross-sectional area A of the wire using the formula $$A = \frac{\pi d^2}{4} .$$ A = (b) (i) Set up the circuit shown in Fig. 1.1 and close the switch. Fig. 1.1 - (ii) Position the crocodile clip labelled 'Y' half-way along the wire. - (iii) Measure and record the distance x of wire between the two crocodile clips, and the ammeter reading I. | v – | | |------------|--| | X - | | | (c) | Change x and repeat (b)(iii) until you have six sets of readings of x and I . | |-----|--| | | Include values of $\frac{1}{I}$ in your table. | - (d) (i) Plot a graph of $\frac{1}{I}$ on the *y*-axis against *x* on the *x*-axis. - (ii) Draw the straight line of best fit. - (iii) Determine the gradient and *y*-intercept of this line. | gradient = | | |----------------|--| | ···intonount — | | 5 | $\overline{}$ | _ | | | | | _ | — ∣ | |-------------------|--|---|---------------|----------------|---|-------------------|------------------|--------------|---|-----------------|--------------|---|-------------------------|--------------|--------------|---------------------------|--------------|----------|------------------------|--|----------------|------------------|------------------|--------------|----------------|----------------|-------|--------------| | \pm | | | | _ | ш | | | | | | | \pm | \pm | \pm | | | \pm | | | | + | \pm | | | | | | | | | \Box | | | $\pm +$ | ++ | Н | | | Ш | $\pm \parallel$ | Н | $\pm \pm$ | $\pm \parallel$ | \perp | | Н | \mathbb{H} | | ΗН | | \coprod | \mathbb{H}^{-} | | Н | \perp | \coprod | + | \mathbb{H} | | \blacksquare | | | | \blacksquare | \blacksquare | | | H | | | П | \blacksquare | \blacksquare | H | | \blacksquare | | | | | \blacksquare | | | Ш | | | | A I | | \pm | | | | # | # | ш | _ | | ш | | | | | | | | | | | \Box | \Box | | # | ш | | | | | | ++++ | | | | \pm | Ш | | | | | | Н | \pm | | + | | | | | | | + | | | Ш | | | | | | $\overline{+}$ | | | $\overline{}$ | # | \blacksquare | \blacksquare | - | H | Н | \blacksquare | Н | \blacksquare | \blacksquare | \mathbf{H} | H | \blacksquare | H | | $\overline{}$ | $\overline{+}$ | \blacksquare | \blacksquare | - | Н | \mathbf{H} | \blacksquare | - | H I | | \bot | | | | 丰 | # | ш | | | ш | | Ш | \perp | | Ħ | | | | | | | | | | ш | # | | | | | ++++ | | | | + | ++ | + | | + | +++ | | Н | + | + | + | H | ++ | | | | + | + | + | | Н | + | Н | | H | | \blacksquare | | | | # | \blacksquare | | | Н | | | Ш | \blacksquare | \blacksquare | \Box | | | | | | | | \perp | | Ш | | | - | ╗ | | +++++ | | | | + | | | | | | | Н | \pm | \pm | + | | \Box | | | | +++ | | | | Ш | \pm | | | Н | | $\overline{}$ | | | ++++ | + | | Н | | Н | ш | + | Н | + | + | + | | \mathbf{H} | | H | | +++ | + | + | | Н | + | \square | - | H | | | | | | 工 | ш | ш | | | ш | | Ш | | \perp | | | | | | | | | | | ш | | | | ∐ I | | ++++ | | + | ++++ | + | ++ | +++ | | \mathbf{H} | +++ | + | Н | + | + | + | | Н | | | | +++ | + | - | ++ | Н | + | HH | | H I | | ## | | | | # | | ш | | | ш | | Ш | \blacksquare | \perp | | | | | | | | | | | ш | | | | | | ++++ | | | | + | | +++ | | + | +++ | | Н | + | + | + | + | ++ | + | Н | | +++ | + | + | | Н | ++ | HH | + | H | | +++ | | + | +++ | \blacksquare | | \blacksquare | | Н | ш | | Н | + | + | \mathbf{H} | Н | \mathbf{H} | | | | + | | | | Н | + | Ш | - | | | | | | | 世 | | | | | | | | \pm | | | | | | | | | \pm | | | | | | | | | +++ | | + | +++ | - | | + | | Н | ш | | Н | + | + | + | \mathbf{H} | \mathbf{H} | | | | ++ | + | \perp | | Н | + | \square | - | \Box | | | | | | \pm | ш | ш | | П | | | Ш | | | ш | | | | | | | | | | ш | | ш | | | | +++ | +++++ | +++ | +++ | + | ++ | +++ | + | + | +++ | + | H | + | + | + | + | H | + | + | +++ | +++ | + | + | ++ | H | ++ | \mathbb{H} | + | н І | | | | | | 井 | \Box | Ш | | | ш | | Ш | Ħ | \parallel | Ħ | | | | | | ## | \parallel | | | Ш | \parallel | Ш | 1 | П I | | ++++ | +++++ | +++ | +++ | + | ++ | +++ | ++ | + | +++ | + | Н | + | + | + | + | ++ | + | + | +++ | +++ | + | + | ++ | H | + | H | + | H | | +++ | | \Box | +++ | # | \Box | Ш | \Box | H | \Box | | Ш | H | \blacksquare | H | H | \Box | | | | \Box | | | \Box | Ш | \blacksquare | Ш | | H I | | | | | | $\pm \pm$ | # | Ш | # | H | \Box | | Ш | \pm | $\pm \dagger$ | \pm | | $\pm \pm$ | 坩 | | шН | | \Box | \pm | | Ш | ₩ | Ш | # | ΗΙ | | $+\Pi$ | ++ | $+\Pi$ | $+\Pi$ | # | H | $+$ \Box | \Box | H | H | # | Н | H | H | H | H | H | H | H | HH | $+$ \Box | H | H | + | H | H | H | Ŧ | ΗΙ | | +++ | | | | 廿 | ## | Ш | ш | ш | \Box | | Ш | \pm | \pm | \pm | | Ш | | | ш | + | | | \pm | Ш | # | Ш | # | Ħ I | | +++ | ++++++ | +++ | +++ | + | ++ | +++ | ++ | + | +++ | + | \mathbb{H} | + | + | + | + | ++ | + | + | +++ | +++ | + | + | ++ | H | + | \mathbb{H} | + | H | | \Box | | | + | 井 | # | Ш | # | Ħ | ш | | Ш | Ħ | $\downarrow \downarrow$ | Ħ | | | H | | ш | \Box | \parallel | | \perp | Ш | # | Ш | 1 | Д I | | ++++ | +++++ | +++ | | + | ++ | ++ | ++ | + | +++ | + | Н | $\pm \pm$ | $\pm \pm$ | + | + | \mathbb{H}^{+} | + | \vdash | +++ | +++ | + | \vdash | | \mathbb{H} | + | \coprod | + | \mathbb{H} | | + | | \Box | + | # | \Box | Ш | \Box | H | \Box | | П | Ŧ | \blacksquare | H | | \Box | H | | | \Box | H | \perp | \Box | П | \blacksquare | Ш | 1 | H I | | | | | | 廿 | Ш | Ш | 世 | 廿 | ш | 廿 | Ш | Ш | Ш | 世 | Ш | Ш | ш | 止 | ш | | ш | 上 | ш | Ш | 世 | Ш | \pm | ШΙ | | +++ | ++++ | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | $++\Pi$ | $+ \Gamma$ | + $+$ $+$ $+$ $-$ | $+$ \Box | +F | H | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | $+ \Gamma$ | H | H | $+$ \Box | + | H | HI | H | H | $+\Pi$ | + | +F | H | $+\Gamma$ | HI | + | + | + | H | | +++ | | | + | 井 | # | Ш | \Box | | ш | | Ш | \Box | # | # | | # | | | ш | + | Ш | | \bot | Ш | # | Ш | # | ΠΙ | | +++ | +++++ | +++ | ++++ | ++ | ++ | +++ | ++ | + | +++ | + | H | + | + | + | + | ++ | + | + | +++ | +++ | ++ | + | ++ | ++ | + | \mathbb{H} | + | H I | | \Box | | | +++ | 丰 | \Box | Ш | \blacksquare | Ħ | ш | | П | # | # | # | | | Ħ | | | + | \Box | \perp | \bot | Ш | # | Ш | # | П I | | | | $\pm \pm \pm$ | | $\pm \pm$ | ++ | Н | $\pm \pm$ | $^{+}$ | ++ | $\pm \vdash$ | Н | $\pm \pm$ | $\pm \pm$ | $^{+}$ | \vdash | \mathbb{H}^+ | ₽ | \vdash | шН | $\pm \pm$ | $\pm H$ | \vdash | | Н | $\pm \pm$ | H | + | Н І | | + | + | \Box | + | # | \prod | П | \blacksquare | Ħ | \Box | H | П | T | H | H | T | \Box | Ŧ | H | \square | Π | H | Ŧ | \blacksquare | П | H | П | Ŧ | H I | | +++ | | | | 井 | \Box | \Box | | † | \Box | + | Ш | \pm | \pm | + | | \Box | \Box | | ш | | | | | \Box | # | Ш | \pm | Ħ I | | +++ | +++++ | +++ | +++ | + | H | H | + | \mathbb{H} | H | + | \mathbb{H} | + | + | + | + | H | + | H | +H | + | \mathbb{H} | H | H | H | + | \mathbb{H} | - | H | | +++ | | + | + | # | \Box | Ш | \bot | Ħ | \Box | # | Ш | # | # | # | | | Ħ | | | \Box | \Box | \perp | \bot | Ш | # | Ш | # | П I | | ++++ | | +++ | | + | ++ | $^{++}$ | ++ | $^{+}$ | ++ | $\pm \pm$ | H | + | $\pm \pm$ | $^{+}$ | \vdash | $\forall +$ | $^{+}$ | H | $\mathbb{H}\mathbb{H}$ | $\pm + +$ | $^{++}$ | \vdash | + | \vdash | + | H | \pm | H I | | \Box | | \Box | \Box | # | \Box | Ш | \blacksquare | H | П | H | П | Ħ | \blacksquare | H | | | П | F | | \Box | \blacksquare | | \blacksquare | П | \blacksquare | П | Ŧ | A I | | | | | | \pm | # | Ш | | \perp | ш | | Ш | \pm | \pm | \pm | \perp | Ш | Ш | | Ш | | | \pm | | Ш | \pm | Ш | | ΗΙ | | +++ | ++++ | $++\Box$ | $++\Box$ | + | + | + | $+\Gamma$ | H | + | $+\Gamma$ | Н | +T | + | $+\Gamma$ | H | HŦ | H | H | +H | + | +F | H | + | HI | $+\Gamma$ | H | + | ΗΙ | | | | | | 苹 | # | Ш | | \Box | ш | | Ш | † | # | # | | | Ħ | | ш | + | \Box | | | Ш | # | Ш | | Ħ I | | +++ | +++++ | +++ | +++ | + | ++ | +++ | ++ | + | +++ | + | \mathbb{H} | + | + | + | + | ++ | + | + | +++ | +++ | ++ | + | ++ | HH | + | \mathbb{H} | + | H | | \Box | | $\Box\Box$ | + | # | \Box | Ш | \blacksquare | Ħ | ш | # | Ш | \blacksquare | \top | Ħ | | | | | Ш | \Box | \blacksquare | | \blacksquare | \Box | \blacksquare | Ш | # | Д I | | | | | | $\pm +$ | $\pm \!\!\!\!+$ | Ш | $\pm \pm$ | $\pm \pm$ | | $\pm \pm$ | \coprod | $\pm \pm$ | $\pm \pm$ | $\pm \pm$ | \vdash | $\coprod +$ | + | \vdash | шН | $\pm \!$ | $\pm \pm$ | \vdash | | \sqcup | $\pm \pm$ | \coprod | _ | Н І | | + | ++++++++++++++++++++++++++++++++++++ | Π | Π | + | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | Π | + | H | н | H | П | H | H | H | H | H | Æ | H | $+$ \Box | Π | F | F | + | П | H | Н | Ŧ | H l | | | | | | 廿 | # | Ш | ш | Ш | ш | \pm | Ш | \pm | \pm | \pm | | Ш | \perp | | ш | + | | \pm | ш | Ш | \pm | Ш | \pm | ∐ I | | $++\mp$ | $++++\mp$ | $++\Box$ | $++\Pi$ | \blacksquare | Ш | $+$ \Box | $+\Gamma$ | + | + | $+\Gamma$ | H | $+\!$ | $+\Gamma$ | $+\Gamma$ | + | $\mathbb{H}^{\mathbb{T}}$ | Н | H | $+\Pi$ | + | $+\Box$ | H | | Н | | \blacksquare | - | H | | | | | | | \Box | Ш | | П | ш | | Н | | \parallel | Ħ | | | | | | + | \parallel | | | Н | | | 1 | o l | | $\pm \pm \pm \pm$ | | $\pm H$ | | | | ₩ | + | $^{+}$ | $\pm +$ | $\pm \pm$ | Н | | $\pm \pm$ | + | \vdash | + | ₽ | \vdash | ΗН | | $\pm \pm$ | \vdash | | Ш | + | | \pm | | | \Box | | \Box | \Box | # | # | Ш | \Box | H | П | H | П | Ħ | \blacksquare | Ħ | | | П | H | | \prod | П | | \Box | П | Ħ | Ш | 1 | ΠΙ | | | | | | 廿 | ш | Ш | ш | Ш | ш | Ш | Ш | \pm | \pm | 廿 | Ш | Ш | 世 | | ш | Ш | Ш | \pm | ш | Ш | ш | Ш | | ⊟ ∣ | | + | ++ | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | $++\mp$ | $+\Gamma$ | $+$ \mp | $+\Pi$ | $+$ \mp | H | $+\Pi$ | $+ \mathbb{T}$ | Н | H | +T | H | H | HT | H | H | $+ \Pi$ | $+\Pi$ | HE | $\vdash \vdash$ | $+$ \top | НП | H | ΗП | -[| H | | | | | | 廿 | \boxplus | Ш | \pm | \Box | \Box | | Ш | \pm | \pm | \pm | | \Box | † | | ш | + | $^{+}$ | \perp | \pm | Ш | \pm | Ш | \pm | H I | | | +++++ | +HI | +++ | + | H | $+\!+\!1$ | \mathbb{H}^{-} | \mathbb{H} | + | + | \mathbb{H} | + | + | + | + | H | + | H | +++ | + | + | + | \mathbb{H}^{-} | HI | + | \mathbb{H} | + | H | | \Box | | | + | 井 | # | Ш | | | ш | | Ш | # | # | # | | ш | | | ш | | ш | | | ш | # | Ш | | □ I | | ++++ | +++++ | +++ | ++++ | ++ | ++ | +++ | ++ | + | +++ | + | H | + | + | + | + | ++ | + | + | +++ | +++ | ++ | + | ++ | ++ | + | \mathbb{H} | + | н І | | | | | + | 丰 | \Box | Ш | \perp | Ħ | ш | | Ш | \mp | \mp | Ħ | | | | | | \Box | Ш | | \perp | Ш | # | Ш | 1 | П I | | | | +++ | | + | ++ | \coprod | ++ | + | ++ | $\pm \pm$ | Н | $\pm \pm$ | $\pm \pm$ | + | \vdash | \mathbb{H}^+ | $^{+}$ | \vdash | $\boxplus \exists$ | ++ | \mathbb{H} | \vdash | | \mathbb{H} | $\pm \pm$ | \coprod | \pm | \mathbb{H} | | | | \Box | + | # | # | П | \blacksquare | Ħ | П | H | П | Π | Π | H | \Box | \Box | Ŧ | H | Ш | Π | H | \perp | \blacksquare | П | \prod | П | Ŧ | H | | ш | | | | 廿 | Ш | Ш | ш | Ħ | Ш | ш | Ш | \pm | \pm | Ш | Ш | Ш | ш | 止 | Ш | | Ш | 士 | ш | Ш | Ш | | | | | +++ | +++++ | $+H\overline{1}$ | +++ | + | H | $+\!\!+\!\!\!\!+$ | H | \mathbb{H} | ++ | + | \mathbb{H} | + | + | + | + | H | \mathbb{H} | H | +H | + | \mathbb{H} | + | H | Н | + | \mathbb{H} | + | H | | \Box | | + | + | 井 | \Box | Ш | \Box | Ħ | \Box | # | Ш | \pm | # | # | | \Box | | | ш | ## | \Box | | \perp | Ш | # | Ш | # | ∏ I | | +++ | ++++ | $+H\overline{+}$ | +++ | + | H | H | + | H | H | + | \mathbb{H} | + | + | + | H | H | H | H | +H | + | \mathbb{H} | H | H^{-} | Н | + | \mathbb{H} | + | H | | | | | + | # | \Box | Ш | | | ш | | Ш | \bot | \mp | # | | | | | ш | + | | | \Box | ш | # | Ш | # | | | +++ | +++++ | +++ | +++ | ++ | ++ | +++ | ++ | + | ++ | + | H | + | + | + | + | H | + | + | +++ | +++ | + | + | ++ | H | + | \mathbb{H} | + | $H \mid$ | | \Box | | $\Box\Box$ | + | # | \Box | \Box | \blacksquare | Ħ | ш | T | П | \blacksquare | \mp | Ħ | H | | Ħ | | Ш | \Box | Ħ | | \Box | П | Ħ | Ш | Ŧ | П I | | | | | | 廿 | ш | Ш | $\pm \pm$ | Ш | ш | \pm | Ш | \pm | \pm | \pm | ш | Ш | ш | Ш | ш | Ш | Ш | 士 | \pm | Ш | \pm | Ш | # | ⊟ l | | | ++++++++++++++++++++++++++++++++++++ | Π | $+\Pi\Pi$ | + | H | Π | + | H | н | H | П | H | H | H | H | H | Æ | H | $\Box\Box$ | Π | H | F | H | Н | H | Н | Ŧ | H I | | | | +++ | ++++ | + | ++ | | | \pm | ш | | Ш | \pm | \pm | \pm | \perp | \Box | ш | | Ш | | | \pm | | Ш | $\pm \pm$ | Н | | ΗΙ | | | \bot | + | # | | +++ | -H | + | | ++ | | + | + | ++ | + | ++ | + | \vdash | | | ++ | + | + | ₩ | | | + | H ! | (e) The quantities I and x are related by the equation $$\frac{1}{I} = Mx + N$$ where M and N are constants and $$\frac{M}{N} = \frac{\rho}{AR}$$ where ρ is the resistivity of the material of the wire and the resistance R of the fixed resistor is given on a card. Use your answers in (a)(ii) and (d)(iii) to determine a value for ρ . | \ <u>_</u> | | |------------|--|