2
(a)
(b)
B
(c)
A

3	C
4	B
5	C
6	D

Question Number	Answer The question must be marked holistically within the context of the candidate's experimental method.	Mark
7	(a) labels on diagram plus additional apparatus required which is not on diagram markers or reference to light gates (1) rule, timing device, micrometer (1) (b) state the quantities to be measured diameter, distance, time (1) Or diameter, velocity (1) (c) for two of these quantities explain your choice of measuring instrument, Max 2 per quantity e.g. diameter - micrometer (1) reading to $0.01 \mathrm{~mm}(0.001 \mathrm{~mm})(\mathbf{1})$ length - metre rule (1) reading to 1 mm (1) time - stopwatch (1) reading to $0.1 \mathrm{~s}(0.01 \mathrm{~s})(\mathbf{1})$ (d) state which is the independent and which is the dependent variable: diameter/radius, (terminal) velocity or time (1) (e) explain how the data will be used Max 2 e.g. radius determination from measured diameter Or velocity from distance and time (1) graph of v against r^{2} and reference to gradient (1) (f) identify the main source of uncertainty and/or systematic error: Max 2 terminal velocity not reached (1) reaction time (1) temperature not constant (1) measurement of diameter (1) micrometer zero error (1) measurement of distance fallen (1) parallax error (1) (g) appropriate comment on safety Max 1 Answer should have some explanation/justification e.g. mop up spills (1) wear goggles to avoid splashes in eye (1) use gloves (if allergic to oil) (1) normal laboratory rules should be followed (1) low risk experiment (1)	
	Total for question 7	13

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	33

(iii) Gradient

The hypotenuse of the triangle must be at least half the length of the drawn line.
Both read-offs must be accurate to half a small square.
If incorrect, write in correct value.
Check for $\Delta y / \Delta x$ (i.e. do not allow $\Delta x / \Delta y$).
y-intercept from graph or substitute correct read-offs into $y=m x+c$
Label FO.
(e) $a=$ gradient value and $b=y$-intercept value.

If inverted axes not corrected for -1
Range of values $\left(0.1 A V^{10} \leqslant a \leqslant 0.9 A V^{10}, b=0 \pm 0.01 A\right)$ and appropriate units
[Total: 20]

2 (a) Raw value(s) of $x: 25.0 \mathrm{~cm} \leqslant x \leqslant 35.0 \mathrm{~cm}$ with unit to nearest mm.
(b) (i) Evidence of repeated measurements of d in (b)(i) or (e)

Value of $d=3.0 \mathrm{~mm} \pm 1.0 \mathrm{~mm}$ or $\mathrm{SV} \pm 1.0 \mathrm{~mm}$
Raw values of d to at least 0.1 mm
(ii) Value of t in range 1 s to 10 s unless SV indicates otherwise. Allow $\mathrm{SV} \pm 5 \mathrm{~s}$
(c) Absolute uncertainty in t_{1} in the range 0.1 to 0.6 s

If repeated readings have been taken, then the uncertainty could be half the range. Correct calculation to get \% uncertainty.
(d) v calculated correctly with consistent units.
(e) Second value for d.

Second value for t.
Quality: t_{2} less than t_{1}. (d increases, t decreases)
(f) (i) Calculation of two values of k.
(ii) Valid conclusion based on the calculated values.

Candidate must test against a specified criterion.
(iii) Relate raw values of x, t and d. Any decimal place arguments score zero.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	33

	Limitations (4)	Improvements (4)	Ignore
A	\mathbf{A}_{p} Two readings not enough (to support conclusion)/too few readings.	A $_{\text {s }}$ Take more (sets of) readings and plot a graph/compare values of k.	Repeat readings.
B	B_{p} Time too short/reaction time large compared to measured time/parallax error in judging start/stop.	$\mathbf{B}_{\mathbf{s}}$ Increase x/lengthen tube/smaller balls/video with timer (playback) in slow motion.	Light gates, motion sensors, data loggers, computers, helpers, solution for parallax error. Set squares, rulers, etc.
C	C_{p} Difficult to see glass balls.	$C_{\text {s }}$ Use coloured balls/shine light through.	Use ball bearings (type of ball and oil stays fixed).
D	\mathbf{D}_{p} Terminal velocity not reached (by the first marker).	D_{s} A valid method to check reached TV, e.g. time constant over three markers/video with timer (playback) in slow motion, multi-flash photography/stroboscope.	References to starting point. Do not accept 'move x down' on its own. Change viscosity of oil (oil and glass must remain fixed).
E	E_{p} Balls not all the same diameter/size/shape/mass	E_{s} Use micrometer screwgauge/top pan balance	
X	X_{p} Balls had a hole in/air bubbles on ball or oil.	$\mathbf{X}_{\text {s }}$ Clean balls/immerse in oil	

[Total: 20]

