

Question	Evidence	1-4 marks	5-6 marks	7-8 marks
$\begin{aligned} & \text { TWO } \\ & \text { (a)(i) } \end{aligned}$	At the steady state condition, no current will flow in the branch with the capacitor present. Therefore the current in the $3 \mathrm{k} \Omega$ resistor will be zero. The rest of the circuit becomes a simple series circuit with resistance $27 \mathrm{k} \Omega$ and voltage 9 V ; therefore the current is $I=\frac{9.00}{27 \times 10^{3}}=3.33 \times 10^{-4} \mathrm{~A}$	Thorough understanding of these applications of physics. OR	(Partially) correct mathematical solution to the given problems.	Correct mathematical solution to the given problems. AND
(ii)	$\begin{aligned} & Q=C V \\ & Q=10.0 \times 10^{-6} \times V \\ & V=I R(V \text { across } 15 \mathrm{k} \Omega=V \text { across capacitor }) \\ & V=3.33 \times 10^{-4} \times 15.0 \times 10^{3}=5.00 \mathrm{~V} \\ & Q=10.0 \times 10^{-6} \times 5.00=50.0 \mu \mathrm{C} \end{aligned}$	Partially correct mathematical solution to the given problems. AND/OR Partial understanding of these applications of physics.	AND/OR Reasonably thorough understanding of these applications of physics.	Thorough understanding of these applications of physics.
(iii)	On opening the switch, the circuit becomes a simple series circuit, with a source voltage of 5.00 V and a resistance of $18.0 \mathrm{k} \Omega$. $I=\frac{5.00}{18 \times 10^{3}}=2.78 \times 10^{-4} \mathrm{~A}$			
(b)	The field lines at the edge of the capacitor are not vertical. They are arced and so have a component acting parallel to the capacitor plate surface. This component will attract the polarised charges of the dielectric (in the same way as charged objects can "pick up" small objects).			
(c)	$\begin{aligned} & \Delta E(\text { capacitance })=\frac{1}{2} \frac{Q^{2}}{C_{\mathrm{i}}}-\frac{1}{2} \frac{Q^{2}}{C_{\mathrm{F}}} \\ & C_{\mathrm{F}}=\varepsilon_{\mathrm{r}} C_{\mathrm{r}} \text { by definition } \\ & \Delta E=\frac{1}{2} \frac{Q^{2}\left(\varepsilon_{\mathrm{r}}-1\right)}{\varepsilon_{\mathrm{r}} C_{\mathrm{i}}} \\ & \Delta E=\frac{1}{2} m v^{2}=\frac{1}{2} \frac{Q^{2}\left(\varepsilon_{\mathrm{r}}-1\right)}{\varepsilon_{\mathrm{r}} C_{\mathrm{i}}} \\ & v=\sqrt{\frac{Q^{2}\left(\varepsilon_{\mathrm{r}}-1\right)}{m \varepsilon_{\mathrm{r}} C_{\mathrm{i}}}} \end{aligned}$			
(d)	Capacitors store energy. They do this by way of charge separation (increasing the electric potential energy of the charges). The total unbalanced charge of any capacitor is always zero.			

Question	Evidence	1-4 marks	5-6 marks	7-8 marks
$\begin{aligned} & \text { 3(a } \\ &)^{2} \end{aligned}$	$C=2.8 \times 3.0 \times 10^{-6}=8.4 \mu \mathrm{~F}$ Assumption: The wax completely fills the distance between the plates.	Thorough understanding of these applications of physics. OR Partially correct mathematical solution to the given problems. AND / OR Partial understanding of these applications of physics.	(Partially) correct mathematical solution to the given problems. AND / OR Reasonably thorough understanding of these applications of physics.	Correct mathematical solution to the given problems. AND Thorough understanding of these applications of physics.
(b)	The dielectric material is polarised by the electric field between the plates. There is now an electric field inside the dielectric, which opposes (weakens) the field between the plates. Reduced field strength, with the same amount of charge stored, means reduced voltage (assuming not connected to battery) and therefore the capacitance has increased. $(C=Q / V)$ If capacitor is connected to the battery the voltage is fixed but the capacitance still increases as more charge is able to 'fit in'.			
(c)	At distance d_{1} the energy stored in the capacitor is $E=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{\varepsilon_{0} A V^{2}}{d_{1}}$ as the capacitance is $C=\frac{\varepsilon_{0} A}{d_{1}}$. As the distance between plates increases from d_{1} to d_{2}, the capacitance changes to $C=\frac{\varepsilon_{0} A}{d_{2}}$ and the energy stored is now $\frac{1}{2} \frac{\varepsilon_{0} A V^{2}}{d_{2}} . \Delta E=\frac{V^{2} \varepsilon_{0} A}{2}\left(\frac{1}{d_{1}}-\frac{1}{d_{2}}\right)=\frac{V^{2} \varepsilon_{0} A}{2}\left(\frac{d_{2}-d_{1}}{d_{1} d_{2}}\right)$			
(d)	As the capacitor is still connected to the battery, the voltage across the capacitor must remain constant at V. As the capacitance decreases as the distance between the two plates increases $C \propto \frac{1}{d}$, the energy stored in the capacitor must decrease (as $E=\frac{1}{2} C V^{2}$). The amount of charge on the plates must also decrease by ΔQ (as $Q=V C$). The "lost" charge is driven back through the battery to the opposite capacitor plate by the work done to separate the plates and the potential energy removed from the capacitor. This missing energy is converted into heat of the connecting wires and into potential energy stored in the battery.			
(e)	The plates, being oppositely charged, attract each other. In separating them, they have to be dragged apart. Work must be done and this energy is stored as electric potential energy in the field between the plates. We express this by talking of an increase in the voltage between the plates. $C=\frac{\varepsilon A}{d} \text { so as } d \text { increases, } C \text { reduces.Energy }=\frac{Q^{2}}{C_{2}}-\frac{1}{2} \frac{Q^{2}}{C_{1}} .$ Q is constant so as C decreases, the energy must increase work is being done to drag the plates apart. $\begin{aligned} & \text { Work done }=\frac{1}{2} \frac{Q^{2}}{C_{2}}-\frac{1}{2} \frac{Q^{2}}{C_{1}} \\ & \frac{1}{2} Q^{2}\left(\frac{1}{C_{2}}-\frac{1}{C_{1}}\right)=\frac{Q^{2}\left(d_{2}-d_{1}\right)}{2 \varepsilon A} \end{aligned}$			

$\begin{aligned} & \text { FOUR } \\ & 6 \text { (a) } \end{aligned}$	Charge will move from C_{1} to C_{2} (due to the mutual repulsion of the excess charges on C_{1}). The voltage across C_{1} will fall, while that across C_{2} will rise until the two potential differences are equal. At that point, charge movement will cease, as the forces on the charges are balanced.	Shows some understanding of the underlying physics.	A reasonable understanding of the underlying physics.	Thorough understanding of the underlying physics.
(b)	$\begin{aligned} & Q_{1 \mathrm{~F}}=C_{1} V \\ & Q_{2 \mathrm{~F}}=C_{2} V \\ & Q=Q_{1 \mathrm{~F}}+Q_{2 \mathrm{~F}} \\ & Q_{1 \mathrm{~F}}=\frac{C_{1} Q_{2 \mathrm{~F}}}{C_{2}}=\frac{C_{1} Q_{2 \mathrm{~F}} p}{C_{1}}=Q_{2 \mathrm{~F}} p \\ & Q_{1 \mathrm{~F}}(p+1)=p Q \\ & Q_{2 \mathrm{~F}}=\frac{C_{2} Q_{1 \mathrm{f}}}{C_{1}}=\frac{\left(Q-Q_{2 \mathrm{f}}\right)}{p} \\ & Q_{2 \mathrm{~F}} \frac{(p+1)}{p}=\frac{Q}{p} \end{aligned}$	(Partially) correct mathematical solution to given problem.	(Partially) correct mathematical solution to given problem.	Correct mathematical solution to the given problem.
(c)	If p tends towards zero, then C_{2} is very large (tending towards ∞) and will act as a short circuit (a very large charge sink). All the charge will flow to it and none of the charge will remain on C_{1}. As shown by the equations (taking the limit below): $Q_{1 \mathrm{~F}}=Q \frac{p}{p+1}$ tends towards 0 when $p \rightarrow 0$ and $Q_{2 \mathrm{~F}}=\frac{Q(1)}{p+1}$ tends towards Q when $p \rightarrow 0$ If p tends towards ∞, then C_{2} is very small (tending toward zero) and will act as a break in the circuit, so no charge will move. $Q_{1 \mathrm{~F}}=\frac{Q(p)}{p+1}$ tends towards Q when $p \rightarrow \infty$ $Q_{2 \mathrm{~F}}=\frac{Q(1)}{p+1}$ tends towards 0 when $p \rightarrow \infty$			
(d)	Original energy $E_{0}=\frac{Q^{2}}{2 C_{1}}$ Final capacitance $=C_{1}+C_{2}=C_{1}+\frac{C_{1}}{p}=C_{1} \frac{(p+1)}{p}$ Q is conserved so Final energy $E_{\mathrm{F}}=\frac{Q^{2} \times p}{C_{1}(p+1)}=E_{0} \frac{p}{p+1}$ The energy change does not depend on the resistance in the circuit, only on the relative sizes (given by the value of " p ") of the capacitances. The resistor provides the mechanism for the energy dissipation.			

5(a)	1 mark for 4 A .	$\begin{aligned} & R_{T}=1.2+1.5+0.3=3.0 \Omega \\ & I=\frac{V}{R}=\frac{12}{3.0}=4.0 \mathrm{~A} \\ & Q_{1}=Q_{2}=V C_{T} \\ & V=4.0 \times 2.7=10.8 \mathrm{~V} \\ & \frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \\ & C_{T}=\frac{1}{\left(\frac{1}{0.05}+\frac{1}{0.02}\right)}=0.014286 \mu \mathrm{~F} \\ & Q_{1}=Q_{2}=V C_{T}=10.8 \times 0.014286 \mu \mathrm{~F} \\ & =0.15 \mu \mathrm{C} \end{aligned}$	2
6(b)	1 mark for unchanged current.	Current unchanged $\begin{aligned} & \text { So } V_{C 1}=V_{R 1}=1.5 \times 4.0 \\ & Q=C V \\ & Q_{1}=6.0 \times 0.05 \mu \mathrm{C}=0.3 \mu \mathrm{C} \\ & \text { So } V_{C 2}=V_{R 2}=1.2 \times 4.0 \\ & Q_{2}=4.8 \times 0.02 \mu \mathrm{C}=0.096 \mu \mathrm{C} \end{aligned}$	2
6(c)		The very top and bottom junctions are at the same potential due to symmetry so the capacitor between them can be ignored. So we are left with two sets of series capacitors each worth in total 0.5 microfarads. Finally we have three parallel branches $\mathrm{C}_{\mathrm{T}}=0.5+0.5+1=2$ microfarads.	2

