uestion Evidence	1-4 marks	5-6 marks	7-8 marks
ONE (a) The reading will be zero. Across each cell (1 volt) must be equal to the voltage drop voltage change across each circuit elemen	(<i>I</i> . <i>R</i>), so the total understanding of these	understanding of these applications of must flow ns that the be the same em so do not must flow Partially correct mathematical solution to the given problems. AND/OR Reasonably these mathematical solution to the given problems.	Correct mathematical solution to the given problems.
(b)(i) The circuit is symmetrical. Equal sized cu along the identical paths AB and AD. Thi voltage drops across resistors AB and AD and so the potential at B and D will be the	rrents must flow physics. s means that the will be the same		AND Thorough understanding of these applications of physics.
b)(ii) DO and BO do not have any current throu contribute to the resistance. This leaves 3 parallel branches, each of re total will be $2r / 3 \Omega$.	mathematical solution to the given problems. AND / OR Partial understanding of these applications of		

Question	Evidence	1-4 marks	5-6 marks	7-8 marks
2(a)(i)	Kirchhoff's Potential Difference Law is a statement of the conservation of energy - in any closed loop the energy lost by circulating charges must equal the energy gained, as they complete the loop with same energy level that they started with. Kirchhoff's Current Law is a statement of the conservation of charge. Since there is no way for charge to be accumulated at a junction, the amount of charge leaving must equal the amount of charge arriving.	Partially correct mathematical solution to the given problems. AND / OR Partial discussion of the underlying	(Partially) correct mathematical solution to the given problems. AND Reasonably thorough	Thorough discussion of the underlying physics of this application. AND Correct
(a)(ii)	Use loop law to calculate current in the 4 ohm resistor $24 = 1 \times 12 + 4 \times i_1$ gives $i_1 = 3$ A and current in 8 ohm = 2 A.	physics of this application.	discussion of the underlying physics of this application.	mathematical solution to the given problems.
(b)(i)	The voltage across both resistors will start at 12 V when the switch is closed. Since the 1µF capacitor will charge quickly ($\tau = 1/1000$ s), the voltage across the 1 k Ω resistor will fall and become effectively zero after 5/1000s. The mF capacitor with $\tau = 10$ s will charge slowly and so the voltage across the 10k Ω resistor will fall, but take 50 s to reach effective zero.			
(b)(ii)	After 10 s The 1 μ F is charged to 12V. The 1000 μ F is only charged to 12 × 0.63 = 7.56 V. When the battery is removed the capacitor voltages will equalise with a flow of charge from the 1 μ F to the 1000 μ F. The voltage of the 1 μ F will fall and that of the 1000 μ F will rise. Initial current is given by Voltage difference / Resistance It is $\frac{4.44}{11 \text{k}} = 0.403 \text{mA}$			
	Total charge must remain constant so $Q_T = Q_1 + Q_{1000}$ = $10^{-6} \times 12 + 10^{-3} \times 7.56$ = 7.572×10^{-3} C Total capacitance = $C_1 + C_2 = 1001 \times 10^{-6}$ F Final voltage of capacitors = $Q / C = 7.572 / 1.001$ = $7.56(4)$ V			

3(a)		Each bulb will have 12 V across it due to symmetry – given that this is the operating voltage of each bulb the resistances can be calculated by using $R = V^2/P$ (the 20W bulbs have resistance = 7.2 ohms and the 40 W bulbs have resistance = 3.6 ohms). The majority of the current will take the path of least resistance so current will go from b to a. I_1 (top left hand branch) = $\frac{12}{7.2}$ and I_2 (bottom left hand branch) = $\frac{12}{3.6}$ $I_{ba} = -I_1 + I_2 = 1.67 \text{ A}$	2
b)	1 mark for L_1 brighter and L_2 dimmer.	When switch S_2 is opened the same current exists in L_1 and L_2 . The resistance of L_2 is unknown as we do not know the V-I characteristics of the bulb, but we can assume the value of the $L_2 < L_1$. This means L_1 has more voltage across it and therefore an increased current and brightness (it may blow). This then means that L_2 has less voltage than before and therefore less current so will be dimmer.	2
c)		We would need the V-I characteristics. Essentially its resistance values for all V and I values.	2

Q	Evidence	1–4 Below Schol	5–6 Scholarship	7–8 Outstanding
FOUR (a)	$F_{g} = \frac{6.67 \times 10^{-11} \times 9.11 \times 10^{-31} \times 9.11 \times 10^{-31}}{R^{2}}$ $F_{e} = \frac{8.98 \times 10^{9} \times 1.60 \times 10^{-19} \times 1.60 \times 10^{-19}}{R^{2}}$ $\frac{F_{g}}{F_{e}} = 2.40 \times 10^{-43}$	Thorough understanding of these applications of physics. OR		
(b)	 Two in parallel (capacitor and inductor), one in series (resistor). Evidence: Finite current at a zero and high frequency implies resistor in series. Can't have the capacitor in series (at low frequency – current would be zero). Can't have inductor in series (at high frequency – current would be zero). Zero current at finite frequency implies infinite impedance – this can happen with parallel branch containing an inductor and a capacitor. 	Partially correct mathematical solution to the given problems. AND / OR Partial understanding of these	(Partially) correct mathematical solution to the given problems. AND / OR Reasonably thorough understanding of these	Correct mathematical solution to the given problems. AND Thorough understanding of these
(c)	Take voltage to be V $I_4 = \frac{V}{r+4}$ $I_1 = \frac{V}{r+1}$ $I^2 R = 16 = \frac{4V^2}{(r+4)^2} = \frac{V^2}{(r+1)^2}$ $V^2 = 16(r^2 + 2r + 1)$ and $V^2 = 4(r^2 + 8r + 16)$ $r^2 + 8r + 16 = 4r^2 + 8r + 4$ $3r^2 = 12$ $r = 2 \Omega$ $V^2 = 144$ V = 12 volts	applications of physics.	applications of physics.	applications of physics.
(d)	The electron associated with a single proton (forming a hydrogen atom) has a restricted set of possible energy values. We say the potential energy held by the electron is quantised because when the electron changes from large PE to less PE, the energy change is released as an electromagnetic photon. These photons always have precise values, forming the hydrogen emission spectrum.			

Question	Evidence	1-4 marks	5-6 marks	7-8 marks
FIVE (a)	An RMS value is required because AC is a varying quantity.	Thorough understanding of this	(Partially) correct mathematical	Correct mathematical solution to the
(b)	AC power is the product of (instantaneous) voltage and current, and is continuously changing. The maximum or peak power is the product of peak voltage and peak current. However this value is the maximum. The average power is half this value. (Reason: the power vs time graph is symmetric and never negative if the current and voltage are in phase.) Therefore RMS power is peak voltage and peak current multiplied together, but to ensure their product (the power) is half the peak power, the current needs to be $\frac{I_{peak}}{\sqrt{2}}$	application of physics. OR Partially correct mathematical solution to the given problems.	solution to the given problems. AND / OR Reasonably thorough understanding of this	AND R Thorough understanding of this application of
	and the voltage $\frac{V_{\text{peak}}}{\sqrt{2}}$ so their product is $\frac{I_{\text{peak}}V_{\text{peak}}}{2}$.	AND / OR	application of physics.	
(c)(i)	$v = 240$ 40° $(R + 120) \times 0.5 = 240\cos 40$ $R_{\text{tot}} = 367.7 \Omega$	Partial understanding of these applications of physics.		
(c)(ii)	So $R = 247.7 \ \Omega = 250 \ \Omega$ RMS power supplied = $240 \times 0.5 = 120 \ W$ Total power dissipated by the motor's resistance and the load resistor is given by $I_2 (120 + r)$ = $(247.7 + 120) \times 0.5^2 = 91.9 \ W$ The difference in the power supplied and power dissipated is stored in the inductor and then returned to the supplier.			
(d)	Add a suitable capacitor to bring the circuit into resonance.			

Question SIX	Type 1 (explanatory) or Type 2 (problem)	B Evidence	A Evidence
6(i)	2	$R = \frac{V}{I} = \frac{0.2}{0.40} = 0.5 \Omega$ Straight line, with gradient representing $R = 0.5 \Omega$, passing through (0,0), (0.2,0.4) should be drawn on the graph.	
(ii)	2		 Candidates need to refer to the back emf suggested in the theory to explain the results. Key points: The induced emf would oppose the motion of the coil, making it harder to turn. The voltage supply would need to produce a larger voltage to overcome the induced emf whilst turning the coil. This is why a smaller than expected current is measured for a given applied voltage. No credit given for an explanation based on a change in the resistance of the wire. (The resistance would need to increase from 0.5 Ω to approx 40 Ω, which is unrealistic even with some heating of the wire.)
(iii)	1		 Key points: Faraday's Law states that the magnitude of an induced emf is determined by the rate of change of flux. For the motor the induced emf should be proportional to the rotation rate. (Rotation rate is proportional to the rate of change of flux). The induced emf can be calculated from the difference between the measured voltage and the expected voltage in the wire when it's not rotating. (ie

Question	Type 1 (explanatory) or Type 2 (problem)	B Evidence	A Evidence
			 the difference between the two lines on the graph). Students must: Calculate the back emf (back emf = V – I × 0.5), or determine this emf from the distance between the two lines on their previous graph. Plot the back emf against rotation rate (labelled axes, sensible scales, points correctly plotted and straight line of best fit). Back EMF Rotation Rate 0 0 0.74 9 1.22 15 1.71 15 2.205 27 2.7 34
(iv)	1	 Conclusion should include the following: A summary of the findings – eg Voltage is non- linearly related to current. The back emf is proportional to rotation rate. Reference to the hypothesis – eg the motor generates a back emf proportional to the rate of change of flux as suggested in the hypothesis. 	

