NZ Scholarship (Physics) 2004 - page 4

Question	Type 1 (explanatory) or Type 2 (problem)		B Evidence
4 (i)	1		The force exerted by the wire on the ball must include a vertical component (equal and opposite to the weight of the ball).
4 (ii)			

Question	Evidence	1-4 marks	5-6 marks	7-8 marks
2(a)	In order to go round the loop, the centripetal force at the top has to be provided by the weight + reaction force. (In the minimum case the reaction could be zero). Mathematically $\frac{m v^{2}}{r} \geq m g$	Partially correct mathematical solution to the given problems AND/OR	(Partially) Correct mathematical solution to the given problems AND	Thorough discussion of the underlying physics of this application AND
(b)	Initial energy $=m g h$ At the top of the loop energy = kinetic energy+potential energy $=\frac{1}{2} m v^{2}+m g D$ At top minimum speed $\begin{aligned} & \frac{m v^{2}}{r}=m g \quad\left(r=\frac{D}{2}\right) \\ & \Rightarrow v^{2}=\frac{D g}{2} \end{aligned}$ So combining $\begin{aligned} & m g h=\frac{1}{2} m \frac{D g}{2}+m g D \\ & h=\frac{1}{4} D+D \\ & h=\frac{5}{4} D \end{aligned}$	Incomplete discussion of the underlying physics of this application OR Correct mathematical solution to the given problems OR Thorough discussion of the underlying physics of this application.	Reasonably thorough discussion of the underlying physics of this application.	Correct mathematical solution to the given problems.
(c)(i)	Pushing the slider means it has more kinetic energy and so requires less potential energy to reach the energy total needed to complete the loop. Therefore less height is needed.			
(ii)	The height is independent of mass (assuming no friction) so no difference.			
(iii)	In the ellipse the radius of curvature at the top is smaller (less than $D / 2$). If the radius is less then less speed is required at the top ($v^{2}=r g$). D is the same so potential energy at top is the same but less kinetic energy is required at the top so the total energy is less so the minimum height is lower.			

Q	Evidence	1-4 marks	5-6 marks	7-8 marks
4 (a)	At the top $\begin{aligned} & \frac{m v^{2}}{r}=m \mathrm{~g} \\ & r=r_{2}-\frac{\pi r_{1}}{2} \\ & v^{2}=\mathrm{g}\left(r_{2}-\frac{\pi r_{1}}{2}\right) \end{aligned}$	Thorough understanding of these applications of physics. OR	(Partially) correct mathematical solution to the given problems.	Correct mathematical solution to the given problems. AND
(b)	$\begin{aligned} & \text { KE at start }=\text { KE at top + GPE gained } \\ & \frac{m v_{\mathrm{i}}^{2}}{2}=m \mathrm{~g} \frac{\left(r_{2}-\frac{\pi r_{1}}{2}\right)}{2}+m \mathrm{~g}\left(2 r_{2}+r_{1}-\frac{\pi r_{1}}{2}\right) \\ & v_{\mathrm{i}}^{2}=\mathrm{g}\left(5 r_{2}-\left(\frac{3 \pi}{2}-2\right) r_{1}\right. \end{aligned}$	Partially correct mathematical solution to the given problems.	AND/OR Reasonably thorough understanding of these	Thorough understanding of these applications of physics.
(c)	The bat hitting the ball: $M_{\mathrm{B}} V_{\mathrm{B}}=M_{\mathrm{B}} V_{\mathrm{B} 2}+m V_{\mathrm{Ball}}$ (conservation of momentum appropriate as long as assume batter doesn't apply an impulse during the collision) $1 / 2 M_{\mathrm{B}} V_{\mathrm{B}}{ }^{2}=1 / 2 M_{\mathrm{B}} V_{\mathrm{B} 2}{ }^{2}+1 / 2 m V_{\mathrm{Ball}}{ }^{2}$ (conservation of KE as stated in the question) $\begin{aligned} & V_{\mathrm{Ball}}^{2}=\frac{M_{\mathrm{B}}}{m}\left(V_{\mathrm{B}}^{2}-V_{\mathrm{B} 2}^{2}\right)=\frac{M_{\mathrm{B}}}{m}\left(V_{\mathrm{B}}+V_{\mathrm{B} 2}\right)\left(V_{\mathrm{B}}-V_{\mathrm{B} 2}\right) \\ & \left(V_{\mathrm{B}}-V_{\mathrm{B} 2}\right)=\frac{m V_{\mathrm{Ball}}}{M_{\mathrm{B}}} \\ & V_{\mathrm{Ball}}^{2}=\frac{M_{\mathrm{B}}}{m}\left(V_{\mathrm{B}}+V_{\mathrm{B} 2}\right) \times \frac{m V_{\mathrm{Ball}}}{M_{\mathrm{B}}} \\ & V_{\mathrm{Ball}}=\left(V_{\mathrm{B}}+V_{\mathrm{B} 2}\right)=2 V_{\mathrm{B}} \text { (since the bat hardly slows at all) } \end{aligned}$	AND/OR Partial understanding of these applications of physics.	of physics.	
(d)	The linear velocity is reduced (there is GPE removed from the initial KE) but the angular velocity is increased (since the radius of the swing is reducing towards zero while the linear velocity is reducing to some fixed positive value).			

Question	Evidence	1-4 marks	5-6 marks	7-8 marks
FIVE (a)	At large angles $\left(>10^{\circ}\right)$ there is no longer a linear relationship between the displacement and the restoring force.	Thorough understanding of these applications of physics. OR Partially correct mathematical solution to the given problems. AND / OR Partial understanding of these applications of physics.	(Partially) correct mathematical solution to the given problems. AND / OR Reasonably thorough understanding of these applications of physics.	Correct mathematical solution to the given problems. AND Thorough understanding of these applications of physics.
(b)	$\begin{aligned} & \mathrm{F}_{\mathrm{NET}}=\mathrm{F}_{\text {TENSIIN }}-\mathrm{F}_{\text {GRAVITY }} \\ & \text { At the bottom, Tension }=M g+\frac{M v^{2}}{r} \end{aligned}$			
	$\begin{aligned} & \text { Height energy lost }=M g r=\text { KE gained }=\frac{M v^{2}}{2} \\ & \text { Therefore } 2 g r=v^{2} \\ & \text { Tension }=M g+\frac{2 M g r}{r}=3 M g \end{aligned}$			
(c)	$T=m g \sin \theta+\frac{m v^{2}}{r}$ Height lost is $r \sin \theta$ $\text { Energy lost }=m g r \sin \theta=\frac{1}{2} m v^{2}$ So centripetal force $\left(\frac{m v^{2}}{r}\right)=2 m g \sin \theta$ Gives $T=2 m g=2 m g \sin \theta$ \{the centripetal component $\}+$ $m g \sin \theta$ \{the weight component $\}$ Cancel and get $\sin \theta=2 / 3$ $\theta=41.8^{\circ}$			
(d)	The positive bob will induce a negative charge on the metal plate. This will increase the downward force acting on the bob. The net effect of this is that the restoring force is increased. This leads to a reduction in the period.			

