Q	Evidence	1-4 marks	5-6 marks	7-8 marks
ONE (a)	The magnetic force on the roller is up the rails (to the left). The gravity force component must be equal and opposite to the magnetic force component. $F_{\mathrm{g}}=m g \sin \phi=F_{\mathrm{m}}=B \cos \phi \times I L$	Thorough understanding of these applications of physics. OR Partially correct mathematical solution to the given problems. AND / OR Partial understanding of these applications of physics.	(Partially) correct mathematical solution to the given problems. AND / OR Reasonably thorough understanding of these applications of physics.	Correct mathematical solution to the given problems. AND Thorough understanding of these applications of physics.
(b)	The moving conductor (the roller) will have a potential difference (pd) induced between its ends by the movement through the magnetic field. This pd will drive a current around the circuit. (This is why a resistor needs to be connected.) The current will produce a magnetic field around the roller, which will react against the permanent magnetic field, causing the roller to slow down. Slowing down will reduce the induced voltage, therefore reduce the current, therefore reduce the retarding force. Once the retarding force (initially larger than the gravity component) becomes equal to the accelerating component of the gravity force on the roller, with no net force now acting on the roller, it will continue moving at some small constant velocity.			
(c)	$\begin{aligned} & V=B \cos \phi \times v \times L \\ & I=\frac{V}{R} \\ & I=\frac{B \cos \phi \times v \times L}{R} \end{aligned}$ At constant velocity $\begin{aligned} & m g \sin \phi=B \cos \phi \times I \times L(\text { from part }(\mathrm{a})) \\ & m g \sin \phi=B^{2} \cos ^{2} \phi \times L^{2} \times \frac{v}{R} \\ & v=\frac{R \times m \times g \tan \phi}{B^{2} \cos \phi \times L^{2}} \end{aligned}$			
(d)	The movement of the roller will depend on the phase state of the supply when the power is turned on. If the voltage is rising from zero to its peak, the roller will move in a series of jerks in one direction (if the frequency is high enough, the movement will appear to be continuous). If the voltage is decreasing from zero towards its negative maximum, then the roller will move in the opposite direction. And if the voltage is falling from its peak value (or rising from its negative maximum), then the roller will vibrate in place.			

Q	Evidence	1-4 marks	5-6 marks	7-8 marks
$\begin{aligned} & \text { TWO } \\ & \text { (a)(i) } \end{aligned}$	Operating resistance of bulb $=\frac{V^{2}}{W}=\frac{120^{2}}{75}=192 \Omega$ Put a 192Ω resistor in series with the bulb. The voltage drop across each will be $240 / 2=120 \mathrm{~V}$ (the required operating voltage for the bulb) The power drawn by this configuration will be $240 \times \frac{75}{120}=150 \mathrm{~W}$	Thorough understanding of these applications of physics. OR Partially correct mathematical solution to the given problems. AND/OR Partial understanding of these applications of physics.	(Partially) correct mathematical solution to the given problems.	Correct mathematical solution to the given problems. AND
(ii)	With the inductor (L), the V_{R} will be 90° out of step with V_{L}. $\begin{aligned} & V_{\mathrm{S}}^{2}=V_{\mathrm{L}}^{2}+V_{\mathrm{R}}^{2} \\ & V_{\mathrm{L}}=\sqrt{240^{2}-120^{2}}=120 \sqrt{3} \\ & X_{\mathrm{L}}=\frac{V_{\mathrm{L}}}{I}=\frac{120 \sqrt{3}}{\left(\frac{75}{120}\right)}=192 \sqrt{3} \\ & L=\frac{X_{\mathrm{L}}}{w}=\frac{192 \sqrt{3}}{2 \pi \times 50}=1.06 \mathrm{H} \end{aligned}$ Power drawn is just the 75 W dissipated by the bulb. The inductor dissipates no power.		Reasonably thorough understanding of these applications of physics.	understanding of these applications of physics
(b)	The AC in the coil creates a strong and fluctuating magnetic field around the iron core. This moving magnetism induces a current in the aluminium ring (an eddy current). The eddy current produces its own magnetic field, which acts in the opposite direction (is repelled by) the coil's magnetism. The repulsive force between the two can be larger than the force of gravity on the ring so the ring is moved away from the coil until it reaches a distance at which the upward magnetic repulsive force is equal to the downward gravitational force.			
(c)	Make the coil "non-inductive" by reversing the direction of the windings after half have been completed in one direction. Reverse the direction of half the windings so that the amount of clockwise current is balanced by an equal amount of anticlockwise current.			
(d)	The glue must be non conducting (and must be permeable to magnetic fields). The core must be laminated to reduce the induction of eddy currents, which would both waste a lot of energy and produce a lot of potentially damaging heat.			

Question	Evidence	1-4 marks	5-6 marks	7-8 marks
3(a)	The induced voltage drives a current around the circuit. The current induces a magnetic field in the roller. This induced magnetism is opposed by the external magnetic field - felt as a retarding force on the roller which slows down and stops. Alternative: The metal wire completes the circuit so a current exists. As the current exists, energy is lost to the system as heat energy, so the kinetic energy of the roller is converted to heat energy, and it will slow down.	Shows good understanding of the fundamental processes involved in producing induced voltages AND/OR Shows moderate understanding of application of fundamental ideas in a new context.	Shows good understanding of the fundamental processes involved in producing induced voltages AND	Shows good understanding of the fundamental processes involved in producing induced voltages AND Shows clear understanding of application of fundamental ideas in a new context.
(b)	$\begin{aligned} & \varepsilon=-\frac{\Delta \phi}{\Delta t} \\ & \phi=B A \Rightarrow \Delta \phi=B \Delta A(B \text { const }) \\ & A=L \times d \\ & \varepsilon=-B L \frac{\Delta d}{\Delta t} \\ & \varepsilon=-B L v \end{aligned}$		Shows moderate understanding of application of fundamental ideas in a new context.	
(c)	The original induced voltage will drive a current, which will charge up the capacitor. The voltage across the capacitor will oppose the induced voltage, and when this results in the current ceasing, there will be no opposing force to further slow the roller, and it will continue at a steady speed.		Shows clear understanding of application of fundamental	
(d)	At constant velocity, no current exists in the circuit. Kirchhoff's voltage rule: Voltage across capacitor $=$ voltage produced by roller $\begin{aligned} & B L v=Q / C \\ & \Rightarrow Q=B L v C \end{aligned}$ Units: B has units of $\mathrm{kg} \mathrm{s}^{-1} \mathrm{C}^{-1}$ L has units of m v has units of $\mathrm{m} \mathrm{s}^{-1}$ C has units of F (equivalent to $C V^{-1}$) Final units are $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} V^{-1}$ but units of V are $\mathrm{J} \mathrm{C}^{-1}$ which is $\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{C}^{-1}$ So this shows final unit C on both sides.		context.	
(e)	The capacitor would discharge a current through the roller. This current would result in the roller experiencing a force either towards or away from the capacitor, depending on the current direction. If the induced force is against the direction of the push, then the roller will move in the direction of the greater force. If the induced force is in the direction of the push, the roller will accelerate rapidly towards the capacitor, then the acceleration will reduce until the roller reaches a steady velocity.			

Question	Type 1 (explanatory) or Type 2 (problem)	B Evidence	A Evidence
4(i)	1		The current in the wire generates a magnetic field. The loop of wire carries a current and is in this magnetic field. These interact to produce a force.
4(ii)	1	The direction of the magnetic field is into the paper (right-hand grip rule). The direction of the force on the loop is given by the right-hand rule. The side nearest the long wire experiences a force away from the long wire.	The direction of the magnetic field is into the paper (right-hand grip rule). The direction of the force on the loop is given by the right-hand rule. Each side of the loop experiences a force towards the centre of the loop. The magnitude of the force on the sides of the loop is given by $F=B I I$, where B is the magnetic field produced by the wire $\left(B \propto \frac{1}{r}\right)$. The forces at the top and bottom of the loop cancel as B is the same, so the forces are equal and opposite. The force is greater along the side of the loop nearest the wire than the opposite side, so the net force will be acting away from the wire.
4(iii)	2		Magnetic field produced by wire: $B=\frac{\mu_{0} I_{2}}{2 \pi r}$ where r is distance from wire. Force F_{1} on side of loop nearest the wire: $F_{1}=B I_{1} l=\frac{\mu_{0} I_{1} I_{2} b}{2 \pi d}$

Question	Type 1 (explanatory) or Type 2 (problem)	B Evidence	A Evidence
			Force F_{2} on side of loop farthest from wire: $\begin{array}{ll} F_{2}=B I_{1} l=\frac{\mu_{0} I_{1} I_{2} b}{2 \pi(d+a)} & \\ \text { Resultant force } F: & F=\frac{\mu_{0} I_{2} I_{1} b}{2 \pi d}-\frac{\mu_{0} I_{1} I_{2} b}{2 \pi(d+a)} \\ & F=\frac{\mu_{0} I_{1} I_{2} b}{2 \pi}\left[\frac{1}{d}-\frac{1}{a+d}\right] \end{array}$
4(iv)	2	Either: When $\mathrm{a} \ll \mathrm{d}$: $\quad F \approx \frac{\mu_{0} I_{1} I_{2} b}{2 \pi}\left[\frac{1}{d}-\frac{1}{d}\right]=0$ ie the forces on the two sides of the loop are approximately equal in magnitude and cancel each other out. or: When d<<a: $\quad F \approx \frac{\mu_{0} I_{1} I_{2} b}{2 \pi}\left[\frac{1}{d}\right]$ ie this is the maximum possible force as the force on the side of the loop farthest from the wire is negligible.	When $\mathrm{a} \ll \mathrm{d}: \quad F \approx \frac{\mu_{0} I_{1} I_{2} b}{2 \pi}\left[\frac{1}{d}-\frac{1}{d}\right]=0$ ie the forces on the two sides of the loop are approximately equal in magnitude and cancel each other out. When $\mathrm{d} \ll \mathrm{a}$: $\quad F \approx \frac{\mu_{0} I_{1} I_{2} b}{2 \pi}\left[\frac{1}{d}\right]$ ie this is the maximum possible force as the force on the side of the loop farthest from the wire is negligible.
4(v)	2	$d=\frac{\mu_{0} N I_{1} I_{2} b}{2 \pi F}=\frac{1.26 \times 10^{-6} \times 5000 \times 100 \times 100 \times 20}{2 \pi \times 20000 \times 9.8}=1.0 \times 10^{-3} \mathrm{~m}$	

Question	Type 1 (explanatory) or Type 2 (problem)		B Evidence

