## Question 1

a.
i) Initial volume $1000 \mathrm{~mm}^{3}$; final volume $1000.40 \mathrm{~mm}^{3} \quad \square$ Increased (trivial)
ii) Bonds between atoms stretched, so a net volume increase reasonable owtte
iii) lateral strain $=(-) 0.0003$; longitudinal strain $=0.001$. So Poisson Ratio (-)0.3
b.
i) Use binomial theorem or error theory ideas :
$V=l A$ so $\frac{\delta V}{V}=\frac{\delta A}{A}+\frac{\delta l}{l}$, from binomial or by differentiation.
Since $\frac{\delta V}{V}=0$ for rubber, and since $\frac{\delta l}{l}$ increases by $2 \%$, then $\frac{\delta A}{A}$ reduces by $2 \% \square$
ii) $A=w^{2}$ so $\frac{\delta A}{A}=2 \frac{\delta w}{w}$. Hence $\frac{\delta w}{w}$ is reduced by $1 \% ~ \square$
iii) By inspection (-)0.5

## Question 2

a) i) $\quad \sigma=0.5 \square \mathrm{mg} / \pi \mathrm{r}^{2} \square=0.5 \times 70 \times 10 / \pi(0.015)^{2}=495 \mathrm{kPa} \square$
(486 kPa with $\mathrm{g}=9.8$ )
ii) Stress doubles $\square$; then increases considerably due to impact of running
strides.
b) i) As volume scales as the cube of scale factor, 1000000 times as big. $\quad$
ii) Cross sectional areas scale by $10,000 \square$, so only 100 times the stress, $\square$
iii) A Brobingnagian on one foot is dangerously close to the failure stress for his thigh bone: thinner bones in the lower leg would therefore break. $\square$ His walk would be likely to be a shuffle maintaining support from both legs, while running would be impossible. $\boxtimes$ owtte (Not so much so for small Brobdingnagian children!)
c) The converse of the above argument is that small scale models will easily be strong enough to stand up while their full scale counterparts may not $\square$. So the model may well be useful to determine whether the geometry works, but to test strength, cross-sections would need to be adjusted to allow for the way in which stresses scale. $\square$ Any sensible extension scores.

## Question 3

(a) $[E]=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}^{-2}=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$

$$
\begin{align*}
& {[\rho]=\mathrm{kg} \mathrm{~m}^{-3}} \\
& {[g]=\mathrm{m} \mathrm{~s}^{-2}} \tag{3}
\end{align*}
$$

(b) Units $\mathrm{m}=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2} \mathrm{x}\left(\mathrm{kg} \mathrm{m}^{-3}\right)^{\alpha} \mathrm{x}\left(\mathrm{m} \mathrm{s}^{-2}\right)^{\beta}$

$$
\begin{aligned}
& \mathrm{m}=\mathrm{m}^{-1} \mathrm{x} \mathrm{~m}^{-3 \alpha} \mathrm{x} \mathrm{~m}^{\beta} \quad \beta=2+3 \alpha \\
& (\mathrm{~kg})^{0}=\mathrm{kg} \mathrm{x}(\mathrm{~kg})^{\alpha} \quad \alpha=-1 \\
& s^{0}=\mathrm{s}^{-2} \mathrm{x} \mathrm{~s}^{-2 \beta} \quad \beta=-1 \\
& \text { only two equations needed to solve for } \alpha \text { and } \beta \\
& \text { one mark each for a correct equation } \\
& h=\text { constant } \frac{E}{\rho g} \\
& \text { ( } \alpha \text { and } \beta \text { are not specifically required - correct result will suffice) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
h & =1 \times \frac{10^{10}}{3 \times 10^{3} \times 10} \\
& =3.3 \times 10^{5} \text { metres } \approx 300 \mathrm{~km}
\end{aligned}
$$

(a) Stress $=\frac{\text { Force }}{\text { Area }}=\frac{0.5 \times 70 \times 9.81}{5.0 \times 10^{-4}}$

$$
=7 \times 10^{5} \mathrm{Nm}^{-2}
$$

(b) ratio $=0.07$
ecf
(c) mass of giant $=9^{3} \checkmark \times 70$

$$
=5.1 \times 10^{4} \mathrm{~kg}
$$

(d) stress $=\frac{0.5 \times 5.1 \times 10^{4} \times 9.81}{9^{2} \times 5.0 \times 10^{4}} \quad$ ecf

$$
\begin{aligned}
& =6.2 \times 10^{6} \mathrm{Nm}^{-2} \\
\text { ratio } & =0.6
\end{aligned}
$$


(e) The ratio will be 1.2 and he will break his leg. owtte

## Question 5

a) (i) 6
$\left.\begin{array}{l}\text { (ii) } a^{2} \\ \text { (iii) } F / a^{2}\end{array}\right\} \quad$ these two steps
(iv) $x / a$
(v) $E=\sigma / \varepsilon=\left(F / a^{2}\right) /(x / a)=F / x a$
so $E=k / a$

(5)
b)
(i) 6 both answers
(ii) 3
(iii) 12
(this arrangement would be hexagonal close packed and, whilst $f c c$ would also have a coord no. of $6, b c c$ would be 8 )
(iv) all bonds intact, so no relative movement of atoms / still solid smaller $k$ ('weaker') means lower $E$ or elastically softer material
Reference to expansion is due to the anharmonic nature of the bond, i.e. the force to compress and the force to expand are slightly different. For this a non-ideal spring is needed. Allow a mark if reference to the microscopic and macroscopic behaviour together.
(v) Specific latent heats for some simple elements:

| Element | SLH (Fusion) <br> $/ \mathrm{kJ} \mathrm{kg}^{-1}$ | SLH (Vaporisation) <br> $/ \mathrm{kJ} \mathrm{kg}^{-1}$ | $\mathrm{F}:(\mathrm{F}+\mathrm{V})$ <br> no units |  |
| :--- | :---: | :---: | :---: | :---: |
| argon | 29.5 | 161 | 0.155 |  |
| helium | 3.45 | 20.7 | 0.143 |  |
| hydrogen $\left(\mathrm{H}_{2}\right)$ | 59.5 | 445 | 0.118 |  |
| krypton | 16.3 | 108 | 0.131 |  |
| neon | 16.8 | 84.8 | 0.165 | $\checkmark$ |
|  |  |  | 0.142 average | $\checkmark$ |

So $14 \%$ or approximately one in seven bonds are broken on fusion and the remainder on vaporisation
Bonus mark realise that $\mathrm{H}_{2}$ is the odd-one-out; average now 0.15

## Question 6

| Question | Answer | Marks | Guidance |  |
| :--- | :--- | :--- | :---: | :--- |
| (b) | (i) | The extension of each spring is halved because the force <br> in each spring is halved. <br> (Hence the force constant is $2 k$. .) | B1 | Allow $F=\mathrm{kx}, \mathrm{x}$ is halved for the same $F$, hence $k$ doubles. |
|  | (ii) | Force measured by pulling back plate with a newton- <br> meter. <br> Extension measured with a ruler (placed close to the <br> transparent plastic tube). | B1 | B1 |


| Question |  | Answer | Marks | Guidance |
| :--- | :--- | :--- | :---: | :---: |
| (c) | force constant of spring arrangement) $=\frac{2 k}{3}$  <br> $\frac{2 k}{3} x=m a$ <br> $a=\frac{2}{3 \times 0.39} k x$ <br> $a=1.7 k x$ M1 |  |  |  |


| Q | Evidence | 1-4 marks | 5-6 marks | 7-8 marks |
| :---: | :---: | :---: | :---: | :---: |
| 7 (a) | GPE lost $=$ KE gained $m g h=1 / 2 m v^{2}$ $v^{2}=2 g h$ <br> Speed of 1 kg mass at collision $=\sqrt{2 g h}=2 \sqrt{9.81} \mathrm{~m} \mathrm{~s}^{-1}$ <br> Speed of platform and ball after collision using conservation of momentum <br> $m v=3 m V(V=$ speed after collision $)$ $V=\frac{v}{3}=\frac{2 \sqrt{9.81}}{3}$ $\mathrm{KE} \text { after }=\frac{1}{2} m V^{2}=\frac{1}{2} \frac{3 \times 4 \times 9.81}{9}=\frac{2}{3} g \mathrm{~J}$ <br> Total initial energy was $m g h=1 \times 2 \times 9.81=2 g \mathrm{~J}$ $\text { Missing energy }=\text { Heat radiated }=2 g-\left(\frac{2}{3}\right) g=-\mathrm{g}=13.1 \mathrm{~J}$ | Thorough understanding of these applications of physics. <br> OR <br> Partially correct mathematical solution to the given problems. | (Partially) correct mathematical solution to the given problems. <br> AND / OR <br> Reasonably thorough understanding of these applications | Correct mathematical solution to the given problems. <br> AND <br> Thorough understanding of these applications of physics |
| (b) | $\begin{aligned} & x=\text { initial compression due to platform } \\ & \quad=\frac{2 \times 9.81}{\mathrm{k}}=\frac{2 \times 1962 \mathrm{~m}}{100}=0.1 \\ & y=\text { extra compression due to addition of the falling 1 kg mass. } \\ & \mathrm{KE}+\text { Initial EPE }+ \text { loss of GPE }=\text { Final EPE } \\ & 1 / 2 m v^{2}+1 / 2 \mathrm{k} x^{2}+m g y=1 / 2 \mathrm{k}(x+y)^{2} \\ & \frac{1}{2} \times 3 \times\left(\frac{2 \sqrt{9.81}}{3}\right)^{2}+\frac{1}{2} \times 100 \times 0.1962^{2}+3 \times 9.81 y \\ & =50\left(0.1962^{2}+0.3924 y+y^{2}\right) \\ & 6.54+1.924722+29.43 y=1.924722+19.62 y+50 y^{2} \\ & 50 y^{2}-9.81 y-6.54=0 \\ & y=\frac{9.81 \pm \sqrt{9.81^{2}-(4 \times 50 \times-6.54)}}{2 \times 50} \\ & =\frac{9.81 \pm \sqrt{1404.236}}{100}=\frac{47.28}{100}(\text { ignore negative root }) \\ & \text { Extra compression }=y=0.4728 \mathrm{~m} \end{aligned}$ | Partial understanding of these applications of physics. |  |  |
| (c) | New equilibrium point is compression of 29.43 cm . Max displacement from unstretched length $=66.90 \mathrm{~cm}$ Amplitude to 37.47 cm |  |  |  |
| (d) | By comparing the total energy at the bottom of the motion with the total energy at the top of the motion. <br> Energy stored at base $=1 / 2 \mathrm{k}(x+y)^{2}$ $=0.5 \times 100 \times(0.4728+0.1962)^{2}=22.378 \mathrm{~J}$ <br> Energy stored at top $=m g \Delta h+1 / 2 \mathrm{k} 0.0804^{2}$ $\begin{aligned} & =3 \times 9.81 \times(2 \times 0.3747)+0.5 \times 100 \times 0.0804^{2} \\ & =22.0548+0.3232=22.378 \mathrm{~J} \end{aligned}$ |  |  |  |

