| 4 | г | _ |
|---|---|---|

| , | o ::    |      | Washing data!                                                                                                                                                                                          |     | Marks available |     |       |       |      |
|---|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----|-------|-------|------|
| ( | Questic | on   | Marking details                                                                                                                                                                                        | AO1 | AO2             | AO3 | Total | Maths | Prac |
| 4 | (a)     |      | Rate of flow of electric charge/electrons (1)                                                                                                                                                          | 1   |                 |     | 1     |       |      |
|   | (b)     | (i)  | During $t = 0$ to $t = 0.8$ s current (or $I$ ) = 0 (1)<br>Then there is a sudden increase at 0.8 s (1)<br>Value of current = $\frac{1.5}{0.2}$ = 7.5 A (1)<br>Current = 0 from $t = 1.0$ to 2.5 s (1) |     | 4               |     | 4     |       |      |
|   |         | (ii) | Tangent drawn to the graph at $t = 3.0 \text{ s}$ (1) Gradient calculated correctly (ignore negative sign) (1) Current in the range 1.0 ± 0.1 A (1)                                                    |     |                 | 3   | 3     | 3     |      |
|   |         |      | Question 4 total                                                                                                                                                                                       | 1   | 4               | 3   | 8     | 3     | 0    |

| 2.<br>(a) |      | $n$ - number of free/conducting electrons (charge carriers) per unit volume (1) accept free electron density $\nu$ - drift velocity (1)                                                                                                   | [2] |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (b)       |      | LHS: Cs <sup>-1</sup> (1) RHS: m <sup>-3</sup> x m <sup>2</sup> x ms <sup>-1</sup> x C (1) Clear manipulation to show/state LHS = RHS (1)                                                                                                 | [3] |
| (c)       | (1)  | $v = \frac{I}{nAe}$ (1) (or correct substitution)<br>$v = 1.30 \times 10^4 \text{ ms}^{-1}$ (1) (-1 for slips in powers of 10)<br>$t = \frac{5.0}{1.30 \times 10^{-4}} = 3.85 \times 10^4 \text{ [s]}$ (1) ecf for incorrect value of $v$ | [3] |
|           | (ii) | Reduced CSA (or diameter) and $n, e$ constant (1)<br>Increased $v$ (1)<br>Hence reduced $t$ (1)                                                                                                                                           | [3] |

| Question |            |       | Marking details      | Marks<br>Available                                                                                                                                                                                                                                 |      |
|----------|------------|-------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3        | (a)        | (i)   |                      | [Free] electrons forced to move by applied pd (Need a reference to drift velocity or electron flow but does not need to be explicitly stated) (1)  They collide with atoms/nuclei/ions/lattice of the wire (1) don't accept particles or molecules | 2    |
|          |            | (ii)  |                      | Power = $\frac{1.8}{60}$ = 0.03 [W] (1)<br>$R = \frac{0.03(\text{ecf})}{1.6^2} = 0.0117 [\Omega] (1)$                                                                                                                                              |      |
|          |            |       |                      | Alternative solution possible for the first 2 marks using $V = \frac{W}{Q}$ and $R = \frac{V}{I}$                                                                                                                                                  |      |
|          |            |       |                      | $\rho = \frac{0.0117 \times 2 \times 10^{-6}}{0.4} $ (1) [ecf on R]<br>= $5.9 \times 10^{-8}$ [ $\Omega$ m] (1)                                                                                                                                    | 4    |
|          | <i>(b)</i> | (i)   |                      | l or (vt) [accept v if stated dist travelled in 1 s]  A [NB free electrons not required to be labelled]                                                                                                                                            |      |
|          |            |       |                      | Number of free electrons = $nAvt$ [or $nAl$ ] (1)<br>Total change = $nAvte$ [or $nAle$ ] (1)<br>$I = \frac{nAvte}{t}$ with cancelling shown [or $\frac{nAle}{t}$ , where $\frac{1}{t} = v$ shown] (1)                                              |      |
|          |            |       |                      | Volume defined either from diagram [e.g. $A$ and $l$ labelled as shown] or in body of derivation [e.g. $vol = Al$ ] and $n$ identified correctly—for the first mark                                                                                | 4    |
|          |            | (ii)  |                      | 1.6 = 6.4 × 10 <sup>28</sup> × 2 × 10 <sup>-6</sup> × $\nu$ × 1.6 × 10 <sup>-19</sup> (1: substitution)<br>$\nu$ = 7.8 × 10 <sup>-5</sup> [m s <sup>-1</sup> ] (1)                                                                                 | 2    |
|          |            | (iii) | (I)<br>(II)<br>(III) | less than 1.6 A identified/circled (1) the same as identified/circled (1) half identified/circled (1)                                                                                                                                              | 3    |
|          |            |       |                      | Question 3 Total                                                                                                                                                                                                                                   | [15] |

4.

15