
(b) The following graph shows how the charge that has passed a point in an electrical circuit varies with time.

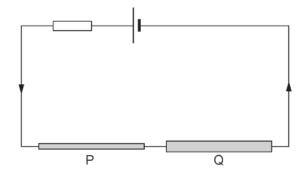
[4]	(i) Describe how the current varies from t = 0 to to

(i	i)	Calculate the current when $t = 3.0 \mathrm{s}$.	[3]
The	curre	nt I in a metal conductor of cross-sectional area A is given by:	
		I = nAve	
(a)		te the meanings of n and v .	2]
(b)		ow that the equation is correct in terms of units.	 3]
(c)	(i)	The current in a copper wire is 2.0 A. The wire has a cross-sectional area 1.2 mm^2 and is 5.0 m long. Calculate the time it takes a free electron in the wire travel from one end to the other. [Take $n_{\text{copper}} = 8 \times 10^{28} \text{ m}^{-3}$.]	of to 3]
	(ii)	The same current (2.0 A) is now passed through a thinner wire of the same leng and material . Use the above equation to explain the effect this change would ha on the time for an electron to travel from one end to the other.	th ve 3]
	•••••		

2.

а)	(i) 	The current in a wire depends on its resistance . Explain, in terms of free electrons, how this resistance arises when a potential difference is applied across the wire. [2]
	(ii)	The wire (labelled P in the diagram) is connected to a fixed voltage source and a resistor to limit the current as shown. The wire is 0.4m long and has a cross-sectional area of $2.0\times10^{-6}\text{m}^2$. When the current is 1.6A it dissipates 1.8J of energy in 1 minute. Calculate its resistivity.
		1.6A v
		P

(b)	(i)	The current,	I, in	a wire	of cross	-sectional	area, A ,	is	given	by the	formula
-----	-----	--------------	-------	--------	----------	------------	-------------	----	-------	--------	---------


$$I = nAve$$

Derive the formula. You may include a clearly labelled diagram.

[4]

(ii)	Calculate the drift velocity of the free electrons in the through it is 1.6 A. [$n = 6.4 \times 10^{28} \mathrm{m}^{-3}$]	ne wire in <i>(a)</i> (ii) when the curren [2]

(iii) Wire P is now connected to another wire, Q, of the same material but with **twice** the cross-sectional area. The wires are connected to the same fixed voltage source and resistor.

Complete the following sentences by circling the correct option given in brackets.

- (I) The current in the circuit containing both wires is [less than 1.6A] [equal to 1.6A] [more than 1.6A]. [1]
- (II) The current in P is [less than] [the same as] [greater than] the current in Q. [1]
- (III) The electron drift velocity in Q is **[half] [the same as] [twice] [four times]** the electron drift velocity in P. [1]

(a)	Derive, giving a labelled diagram, the relationship between the current I through a metal wire of cross sectional area A , the drift velocity, v , of the free electrons, each of charge e , and the number, n , of free electrons per unit volume of the metal. [4] $(I = nAve)$.
(b)	Calculate the drift velocity of free electrons in a copper wire of cross sectional area $1.7 \times 10^{-6} \mathrm{m}^2$ when a current of 2.0 A flows. $[n_{\mathrm{copper}} = 1.0 \times 10^{29} \mathrm{m}^{-3}]$. [2]
(c)	A potential difference is required across the copper wire in order for the current to flow. The size of the current depends on the wire's <i>resistance</i> . Explain in terms of free electrons, how this resistance arises.

4.

|
 |
|------|------|------|------|------|------|------|------|------|------|------|
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |

same for this longer wire. [3]

Quantity	For the longer wire this quantity is
Cross-sectional Area	
<i>n</i> , number of free electrons/unit volume	
Resistivity	