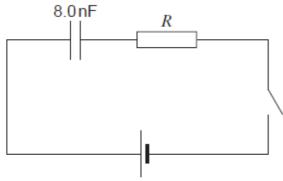
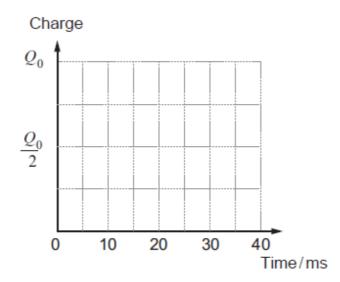

(a) (i) An 8.0 nF capacitor has square plates separated by 0.20 mm of air. Calculate the length (x) of the sides of the plates.[3]

	 • • • •			 • • • • •	• • • • •	 • • • • •	 • • • •		• • • • •			• • • •	• • • •	• • • •	• • • •	 	• • • •		••••	• • • • •	• • • • •	• • • •	• • • •	• • • •		 • • • • •		• • • • •	• • • • •	••••	• • • •	• • • •				 		 • •
• • • •	 • • • •	••••	••••	 ••••	••••	 ••••	 	• • • •	• • • • •	••••	••••	• • • •	• • • •	• • • •		 		••••	••••	• • • • •	••••	••••	• • • •	• • • •	• • • • •	 • • • • •	••••	• • • • • •			••••	• • • •	• • • • •	• • • • •	•••••	 	• • • • •	 • •
	 			 		 	 		• • • • •							 							• • • •			 							• • • • •			 		 •

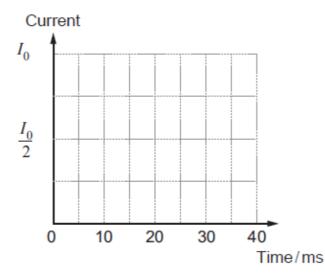

(ii) Which of the following combinations of 8.0 nF capacitors has a capacitance of 12.0 nF? Justify your answer. [4]

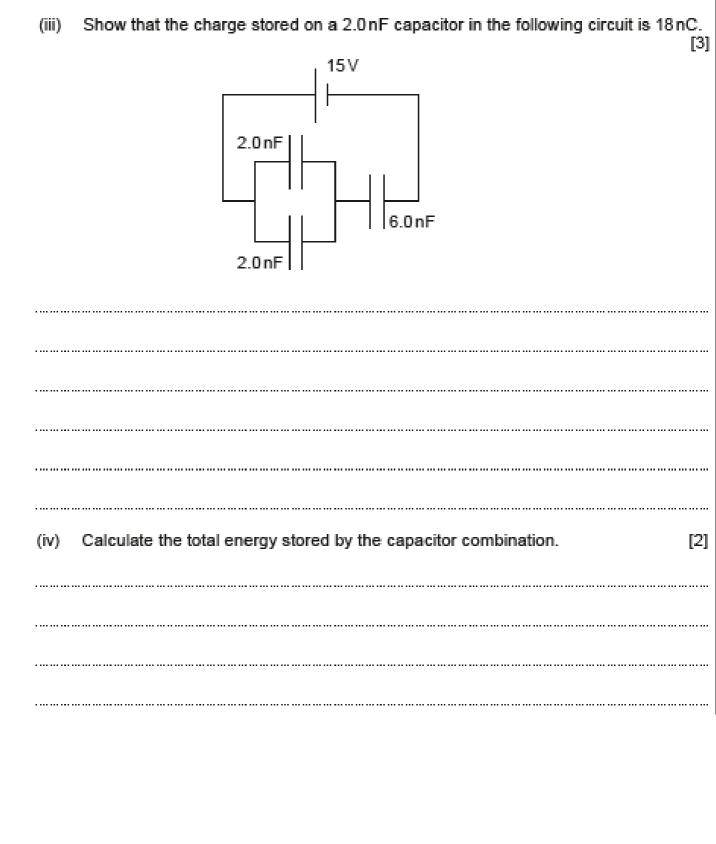
All individual capacitors shown are 8.0 nF.

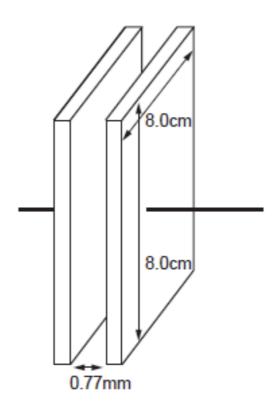
(iii)	State how the capacitance of the capacitor can be increased without change dimensions.
(iv)	Calculate the charge on the plates of the 8.0 nF capacitor when it stores an of 0.62 μJ.
(i)	A charged 8.0 nF capacitor is discharged through a large resistor. Calculat resistance of the resistor if the time constant is 15.5 ms.
(i)	A charged 8.0 nF capacitor is discharged through a large resistor. Calculat resistance of the resistor if the time constant is 15.5 ms.
(i)	resistance of the resistor if the time constant is 15.5 ms.
(i)	resistance of the resistor if the time constant is 15.5 ms.


(c) An identical, uncharged 8.0 nF capacitor is charged in the following circuit, using the same large resistor, R. The switch is closed and the capacitor is uncharged at time t = 0.

Without further calculations, sketch graphs of:

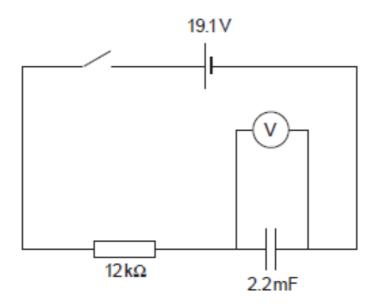

(i) the charge on the plates of the capacitor against time;


(ii) the current in the circuit against time.


1.

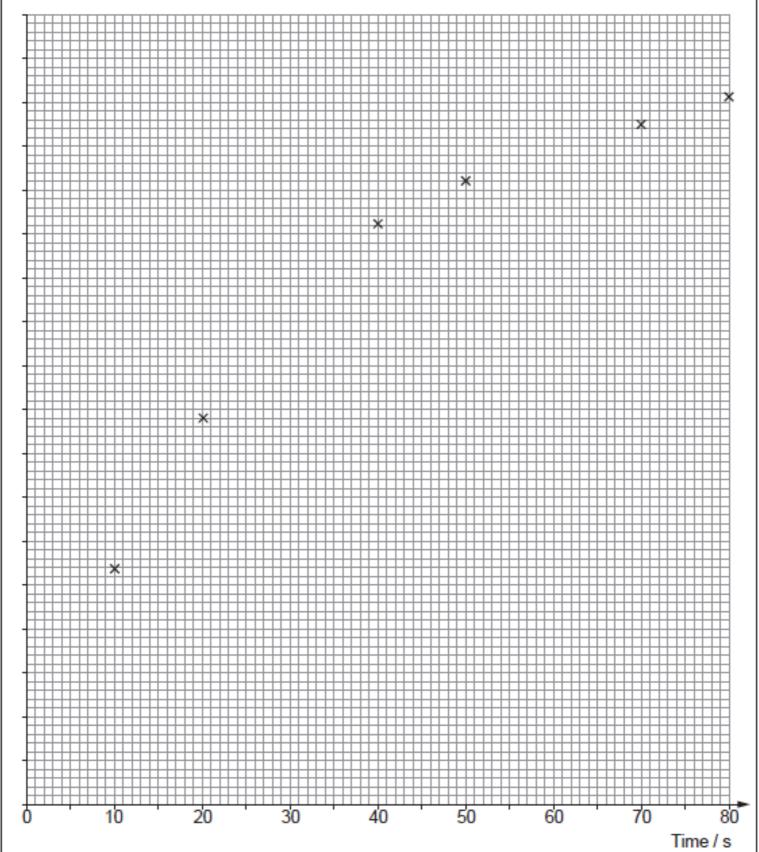
(a)	(i)	A laboratory technician has two square aluminium plates with sides of le 18.0 cm. Calculate the separation, d , of the plates that produces a capacitan 2.0 nF.	ength ce of [3]
	• • • • • • • • • • • • • • • • • • • •		
	(ii)	Calculate the capacitance of the capacitor combination shown.	[3]
		2.0 nF 6.0 nF	

(b) A group of students investigated the charging of a capacitor through a resistor and obtained the following data. pd across capacitor / V Current / mA 121 2 30 30 Time / s Time / s Draw a circuit diagram of the apparatus that might have been used to obtain the data. (ii) Use the graphs to determine: the emf of the power supply; the resistance of the resistor; [5] the capacitance of the capacitor.


(a) (i) For the air-spaced parallel plate capacitor shown, calculate the pd applied when it stores 25.5 μJ of energy.

(ii)	Explain why the capacitor stores energy when a pd is applied to the plates.	[2]
•••••		
(iii)	A group of scientists claim that they have developed a new dielectric that entered the above capacitor to store a million times more charge and energy for a given Explain what further steps must be taken by the scientific community and industries before this new dielectric can be used in devices and sold to the public.	n pd.
		•••••

(b) Bethan investigates the charging of a capacitor using the following circuit.


The results she obtains are then tabulated.

Time / s	pd across capacitor / V ± 0.5 V	Charge on capacitor / mC ± 1.1 mC
10.0	6.1	13.4
20.0	10.0	22.0
30.0	12.8	
40.0	15.1	33.2
50.0	16.2	35.6
60.0	17.1	
70.0	17.7	38.9
80.0	18.3	40.3

(i)	Confirm that the uncertainty in the charge is 1.1 mC (you may assume that the uncertainty in the 2.2 mF capacitor is negligible).	[1]
(ii)	Complete the table	[2]

(iii) Complete the graph by labelling the *y*-axis scale, plotting the remaining two points, adding error bars for charge and drawing a curve of best fit. [5]

Charge / mC

Ç	$Q = Q_0 \left(1 - e^{-\frac{1}{2}} \right)$	$\left(\frac{t}{RC}\right)$ and $I = I_0$	$e^{-\frac{t}{RC}}$	
)		