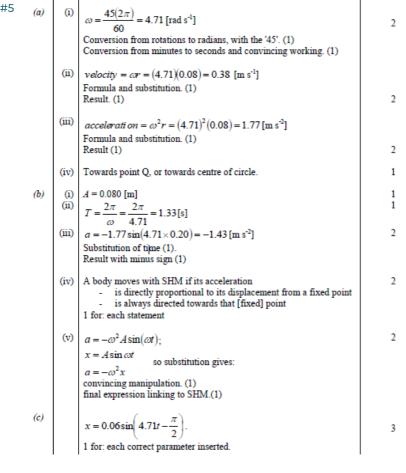
#2


Que	stion		Marking details	Marks Available
5	(a)		$\omega = \frac{2\pi(1200)}{60} \text{ (conversion of units (1))} = 125.7 \text{ [rad s}^{-1}\text{]} $ (1) $F = m\omega^2 r = (0.80)(125.7)^2(0.25) \text{(subs (1))} = 3160.1 \text{ [N]} $ (1)	4
	(b)	(i)		
		(ii)	$R = 3\ 160.1 + (0.8)(9.81) = 3\ 168\ [N]$ (1) ecf from (a) $R + mg = 3\ 160.1$	
			$R = 3\ 160.1 - (0.8)(9.81) = 3\ 152 [N]$ (1) ecf from (a)	3
	(c)		Resonance – frequency of rotation matches the natural / resonant frequency of vibration of the saucepan [lid] (1)	
			[When the spin rate decreases,] the frequencies no longer match / so no resonance (1)	2
			Question 5 Total	[9]

	Questio		Marking details	Marks available AO1 AO2 AO3 Total					
١ '	Quesuo	m	marking details			Maths	Prac		
1	(a) (i) Velocity [of car] is changing [with time] (1) because its direction is changing [so the car is accelerating] (1) or There is a resultant force (1)		2			2			
		(ii)	[towards the centre] due to friction / grip (1) $v = \frac{45 \times 10^3}{60 \times 60} = 12.5 \text{ m s}^{-1} \text{ (conversion) (1)}$ $\omega = \frac{v}{r} = \frac{12.5}{80} = 0.156 \text{ rad s}^{-1} \text{ substitution and calculation (1)}$		2		2	2	
		(iii)	$a = \frac{v^2}{r} = \frac{(12.5)^2}{80} \text{ substitution (ecf) (1) [Alt: use } a = \omega^2 r]$ $= 1.95 \text{ m s}^{-2} \text{ (1)}$ Direction: towards centre (of 'circular' motion) (1)	1	1		3	2	
	(b)		Either: Any two × (1) of these points - Appropriate tyre design for friction - Banking of road [for contribution from normal contact force] - Appropriate surface - Suspension set-up - Anti-roll bars. (or any sensible answers, one referring to road and the other to the car) Or any one sensible point (1) + explanation of the role of physics (1) [2	2		
			Question 1 total	4	3	2	9	4	0

#4

0	estion		Marking details		Marks available				
Qu	lestion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
(a)	(i)		T tension in the string and mg weight of mass (gravitational force or gravity)	1			1		
(ii) T does not have a component tangential to the arc (1) Component of mg tangential to the arc is $mg \sin \theta$, (1) this is in the opposite direction to s (or θ) and so the negative sign (1)			3		3	1			
(iii) $\operatorname{acceleration} = \frac{-mg\sin\theta}{m} = -g\sin\theta$ $= -g\theta \text{ (1)(using the approximation)}$ $\theta = \frac{s}{l} \text{ or } \sin\theta = \frac{s}{l} \text{ (1)} = -\frac{gs}{l}$			2		2	2			
	(iv)		Acceleration $\propto \theta$ (or s) measured [from a fixed position] (1) and opposite in direction (-ve) so SHM (1)			2	2		
(b)	(b) (i) Substitution: $T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{1.2}{9.81}}$ (1) $= 2.20 \text{ [s]}$ (1)		1	1		2	2		
		II	$f = \frac{1}{T} = 0.45[5]$ [H]z ecf (1)		1		1	1	
(ii)			For maximum distance along the arc $\theta_{max}=0.067$, also $\sin\theta_{max}=0.067$ As $\theta_{max}=\sin\theta_{max}$ (i.e. for the largest value of θ) (1) then $\sin\theta$ is equal to θ for all θ , and approximation holds for SHM. System oscillates with SHM (1)			2	2	1	
Question total		2	7	4	13	7	0		

Question		n	Marking details		Marks available					
	Questio	'	marking details	A01	AO2	AO3	Total	Maths	Prac	
2	(a)		Angle when arc [length] equals radius	1			1			
			Accept about 57.3° or angle when $2\pi = 360^{\circ}$ or cycle / circle							
	(b)	(i)	Use of $T = \frac{1}{f}$ (1)	1	1		2	1		
			Answer = 1.67 [s] (1) Accept $\frac{5}{3}$ or 1.66 or 1.6 or 1.7 [s] Don't accept 1.6 [s]				_			
	(ii) Substitution into $\omega = \frac{2\pi}{T}$ or $2\pi f$ or and $v = \omega r$ (1) ecf on T or f									
			$v = 10.6 \text{ [m s}^{-1}\text{] (1)}$ (Accept 10.5 m s ⁻¹ if 1.67 s used)		2		2	2		
	(c) $N = \frac{mv^2}{r} \text{ or } mr\omega^2 \text{ or implied (1)}$		1							
			$N = \frac{66.2 \times (10.6)^2}{2.8} = [2 634] [N] (1) \text{ ecf on } v \text{ and } \omega \text{ accept}$		1					
			approximately 2657 [N] $F = 66.2 \times 9.81 = [649.4 [N]]$ (1) Vertical forces are balanced or equivalent e.g. $F = W$ (1)	1	1		4	2		
	(d)	(i)	$650 \le \mathbf{or} = \mathbf{or} < \mu \times 2600 \text{ (1)}$ So $\mu > \mathbf{or} = 0.24 \text{ or } 0.25 \text{ (1)}$	1	1		2	2		
			Alternative: 2600 × 0.25 (1) = 650 (1)							
			Friction = 650 [N] or implied (1) $\frac{650}{0.45} = 1444 [N] (1)$		1	1				
			Equating to centripetal (1) ω = 2.8 [rad s ⁻¹] (1) Answer of 2.51 [rad s ⁻¹] award 1 mark only			1	4	2		
			Question 2 total	5	7	3	15	9	0	

	Question		Marking details		Marks available				
				AO1	AO2	AO3	Total	Maths	Prac
	(a))	Distance moved by mass P in 1 period, T (i.e. in one rotation) =						
			$2\pi R$ and speed = distance / time = $\frac{2\pi R}{T}$		1		1	1	1
			Alternative:						
			$\omega = \frac{2\pi}{T} \text{ and } v = \omega R$						
	(b))	R/m Time of T/s $v/m s^{-1}$ $v^2/m^2 s^{-2}$						
			10 rot/s 7/11/3						
			0.50 4.7 0.47 6.68 44.6						
			0.60 5.2 0.52 7.25 52.6						
			0.70 5.6 0.56 7.85 61.6						
			0.80 6.0 0.60 8.38 70.2						
			0.90 6.3 0.63 8.98 80.6						
			T column: All values correct (1)						
			For column v all values correct (1)						
			For column v^2 all values correct ecf (1) Consistent use of sig figs in each column and 2 or 3 sig figs (1)		4		4	4	4
-	(c)) (i)	Centripetal force = $0.010 \frac{v^2}{R}$						
	(-)			1					
			(1 for $\frac{mv^2}{R}$; 1 if value inserted for m)		1		2	1	2
		(ii)	Forces acting on mass Q: $0.090 g - \tau = 0$ τ : tension (1)						
			So $\tau = 0.090g$. Substitution for τ into (c)(i) (1)						
			$0.090g = 0.010 \frac{v^2}{R}$						
		$v^2 = \frac{0.090g}{0.010} R$							
			$v^2 = 9g R$ clear and convincing working (1)						
			V = 2g N Glocal and derivationing working (1)		3		3	2	3
	(d)	(i)							
			90-0						
			70-0						
			2						
			p ² m ² - 2						
			60-0						
			6						
			50.0						
			40-0						
			0.4 0.6 0.8 /*0						
			R m						
		Axes, suitable choice scales (no multiples of 3) and labels on both axes (1) – scales to occupy more than half of paper							
			All points plotted correctly to ±½ small square division (2)						
			4 points plotted correctly to ±½ small square division award 1 mark						
			1-3 points plotted correctly to ±½ small square division award 0 marks						
-	-	(;;)	Line of best fit (1)		4		4	4	4
		(ii)	gradient = $\frac{50.0}{0.56}$ = 89.286 m s ⁻² ; find gradient from best fit line (1)						
			also gradient = 9g general method (1)						
			9g = 89.286						
		_	the state of the s						

		Question total	1	13	4	18	15	18
	(iii)	Take measurements for each value of <i>R</i> several times or measure time of more rotations or use of video capture or increase radius and period Accept repeat readings Don't accept have an assistant			1	1		1
		$g = \frac{1}{9}$ 89.288 = 9.92 firs unit mark (1) (Accept $g = 8.8$ to 10.8 m s ⁻² i.e. uncertainty of ~10%.) Use of single data point award a maximum of 2 marks			3	3	3	3

(a)	[centripetal force =] $m\omega^2 r$ [or $\omega^2 r$ and ma] (1) $F = 32.5 \times 1.4^2 r$ [= 63.7 r] (1) Friction [of the surface on the shoes] provides centripetal force [or is the resultant etc.] (1) [Accept $F = m\omega r^2$ for 1^{tt} and 3^{tt} marks as F is defined in the question]	3
(b)	63.7 r = 114 [N] (1) r = 1.79 and relevant comment, e.g. if r greater, F > 114 N (1) [Alt: Subst r = 1.8 m and comment that F > 114 N]	2
(c)	$T = \frac{2\pi}{\omega}$ [or by impl.] (1) = $\left[\frac{2\pi}{1.4}\right]$ 4.49 s (1)	2
(d)	$v = \omega A$ [or by impl.] (1) = [1.4 × 1.8 =] 2.52 m s ⁻¹ (1) [If $v = A\omega \cos \omega t$, or equiv, then $\cos \omega t = 1$ must be stated for 1 st mark]	2
(e)	$a = \omega^2 A$ [or by impl.] (1) = [1.4 ² × 1.8 =] 3.53 m s ⁻² (1) occurs at the extremities / when $x = \pm A$ etc. (1) [If $a = A \omega^2 \cos \omega t$, or equiv, then $\cos \omega t = 1$ must be stated for 1 st mark]	3
Ø	At least one cycle of wave drawn with correct amplitude [1.8 m e.c.f.] (1) Reasonable shape of sinusoid + correct period + correct phase [i.e. sin wave] (1)	2
(g)	Use of $-1.00 = \sin \omega t$ (1) $1.4t = \sin^{-1}\left(\frac{-1}{1.8}\right)$ (1) [= -0.59] $t = -0.42 \text{ s}$ (1) [Mysterious loss of $-$ sign loses 1 mark] Max 2 marks for reading from graph $\pm 0.1 \text{ s}$, i.e. $2.6, 2.7 \text{ s} \checkmark$ 4.0, 4.1 s \checkmark	
	$t_1 = \frac{T}{2} + 0.42 [2.42 \text{ s}] \text{ and } t_2 = T - 0.42 [4.07 \text{ s}] (1)$	4
		[18]

#7

Question total

Questio		Marking details		Marks available				
Questio)II	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(a)	(i)	Use of the equation $\frac{M_2d}{(M_1+M_2)} = x$ even if wrong $M_2(1)$	1					
		$\frac{9.2 \times 10^{24} \times 5.3 \times 10^{10}}{(9.5 \times 10^{-23} (9.2 \times 10^{-3}))^{24}} = seen (1)$	1			2	2	
		($\{\pm 9.2 \times 10^{-24}\}$ can be omitted from the above equation) or 513 263 [m] seen etc.						
	(ii)	$v = \frac{2\pi r}{T}$ applied or $v = \omega r$ and $\omega = \frac{2\pi}{T}$ combined (1) Conversion of 130 days (130 × 24 × 3600) (1)	1	1				
		Answer = 0.287 [m s ⁻¹] (ecf on day conversion) (1)		1		3	3	
	(iii)	Redshift is small or the redshift is proportional to velocity or small $\Delta\lambda$ or shown using the Doppler equation (1) Small wavelength change is difficult to measure or shifted						
		wavelength is too close to the original (1)		2		2		
(b)	(i)	$F = \frac{GMm}{r^2} \text{ used (1)}$	1	1		2	2	
		Answer = 2.08×10^{23} [N] (1)		1		2		
	(ii)	Method for obtaining stress i.e. $\frac{F}{A}$ (1) 1.35 × 10 ⁹ [Pa] (1) Correct conclusion e.g. the steel bar would break ecf (1) Theory doesn't work / Newton's grav law used successfully for centuries / won't work for elliptical orbits / would melt (1) Alternative: Use of $F = \alpha A$ (1) $F = 6.9 \times 10^{22}$ [N] (1)			4	4	2	
(c)	(i)	PE = $-\frac{GMm}{r}$ used N.B. ecf if PE = Fr used (1) Answer = [-]1.10 × 10 ³⁴ [J] (1)	1	1		2	2	
	(ii)	Realising KE is involved (1) Correct variation with distance for KE or velocity or as PE increases KE decreases or converse (1)			2	2		