Question	Marking dataile	Marks available						
Question	Marking details		AO2	AO3	Total	Maths	Prac	
	5-6 marks Comprehensive description of both the method and the analysis. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks Comprehensive description of either the method or the analysis or limited description of both areas provided. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks Limited description of either the method or the analysis provided. There is a basic line of reasoning which is not coherent, largely	AO1	7.02	NO CONTRACTOR OF THE PROPERTY	, 0.00			
	There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. O marks No attempt made or no response worthy of credit.							
	Question 4 total	6	0	0	6	0	6	

	Questio	_	Madian dataila		Marks available					
			Marking details		AO2	AO3	Total	Maths	Prac	
3	(a)		a = acceleration ω = angular velocity or angular frequency or pulsatance x = displacement All 3 correct (1)	1			1			
	(b)	(i)	$\omega = \frac{2\pi}{0.4} (1) [= 15.7 \text{ s}^{-1}]$ $a_{\text{max}} = \omega^2 A = (15.7)^2 \times 0.012 (1)$ $= 2.96 [\text{m s}^{-2}] (1)$		1		3	2		
		(ii)	One value of a on graph (1) ecf from $(b)(i)$ Any straight line (1) Correct position of line (1)		3		3	2		
	(c)		$x = \frac{0.012}{\cos\left(\frac{15.7}{t} + \frac{3\pi}{2}\right)}$ (1 × 3 – one mark for each box) (alternative for angle: $-\frac{\pi}{2}$) Accept 5 π for 15.7. ecf on ω		3		3	1		
	(d)	(i)	Example e.g. microwave ovens or swing (1) Oscillator and driving force named e.g. water molecules and microwaves or swing and person pushing (1)				2			
		(ii)	Example and consequence e.g. bridge and falling or something in the dashboard and buzzing (1) Driving force e.g. wind / soldiers marching or engine (1) Resonance explained i.e. both frequencies are the same (1)				3			
			Question 3 total	7	8	0	15	5	0	

	uesti	on	Marking dataile	Marks available					
L G	uesti		Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)	(i)	$T = 2\pi \sqrt{\frac{l}{g}}$						
			$\omega = \frac{2\pi}{T} = \sqrt{\frac{g}{l}} \text{ combining formulae (1)} = \sqrt{\frac{9.81}{4.0}}$		2		2	2	
\vdash		/SIA	= 1.57 rad s ⁻¹ (1) convincing						
			$v_{\text{max}} = \omega A$ (1) $v_{\text{max}} [= 1.57 \times 0.25] = 0.39 \text{m s}^{-1}$ (1) $E_k = \frac{1}{2} m v^2 \text{ and } v = (-)A\omega \sin \omega t / v = (-)0.39 \sin 1.57t$ (1)		2		2	1	
		(iii)		1					
			$E_k = \frac{1}{2} \times 0.05 \times (0.39)^2 \sin^2 1.57t$ (1)	'					
			$=3.8\times10^{-3}\sin^21.57t$ [convincing]		1		2	1	
П		(iv)							
			0.25 10 10 10 10 10 10 10 10 10 10						
			0.99 A 0 0.0038						
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
			Phase of the velocity graph (1) Period of the kinetic energy graph (1) Visition and phase (1)						
1 1			Kinetic energy curve always ≥ 0 with shape and phase (1) Values on the axes of both graphs (1)		4	l	4	2	
		(v)	$mgh = 3.8 \times 10^{-3} \text{ J ecf (1)}$						
			$h = \frac{3.8 \times 10^{-3}}{0.05 \times 9.81} = 0.008 \text{ m (1) (= 8 mm)}$				_	_	
					2		2	2	
H	(b)	(i)	Or: using trig: 4 - 4 cos (0.25/4) (1) = 8 mm (1)		-				
	(10)		projection of driving force Sensible curve [X] with label [accept curve to the origin]	1			1		
		(ii)	Resonance	1			1		
		(iii)	Sensible curve with label (see part (b) (i) [cannot cross X – always below, can co-incide at low frequencies] (1) Lower maximum amplitude at the same frequency or to left of maximum of curve X (1)	2			2		
			Question 7 total	5	11	0	16	8	0

#4	

Question				Marking details		Marks available				
	Question marking details		Marking details	AO1	AO2	AO3	Total	Maths	Prac	
	(a) (i) T tension in the string and mg weight of mass (gravitational force or gravity)		1			1				
	(ii) T does not have a component tangential to the arc (1) Component of mg tangential to the arc is $mg \sin\theta$, (1) this is in the opposite direction to s (or θ) and so the negative sign (1)			3		3	1			
		(iii)		acceleration = $\frac{-mg\sin\theta}{m} = -g\sin\theta$ = $-g\theta$ (1)(using the approximation) $\theta = \frac{s}{l}$ or $\sin\theta = \frac{s}{l}(1) = -\frac{gs}{l}$		2		2	2	
		(iv)		Acceleration $\propto \theta$ (or s) measured [from a fixed position] (1) and opposite in direction (-ve) so SHM (1)			2	2		
	(b)	(i)	I	Substitution: $T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{1.2}{9.81}}$ (1) = 2.20 [s] (1)		1		2	2	
			II	$f = \frac{1}{T} = 0.45[5]$ [H]z ecf (1)		1		1	1	
		(ii)		For maximum distance along the arc $\theta_{max}=0.067$, also $\sin\theta_{max}=0.067$ As $\theta_{max}=\sin\theta_{max}$ (i.e. for the largest value of θ) (1) then $\sin\theta$ is equal to θ for all θ , and approximation holds for SHM. System oscillates with SHM (1)			2	2	1	
				Question total	2	7	4	13	7	0

Question			Marking details		Marks available				
\perp			•	A01	AO2	A03	Total	Maths	Prac
6	(a)	(i)	kx = mg(1) $x = \frac{0.150 \times 9.81}{7.5} = 0.196 \text{ m answer (1)}$		2		2	2	2
		(ii)	$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{0.150}{7.5}}$ substitution (1) = 0.889 s (1)	1	1		2	2	2
			NB. No credit for use of $T = 2\pi \sqrt{\frac{l}{g}}$						
	(b)		Drop in amplitude at beginning and end compared, e.g. 0.033 m and 0.005 m over first and last intervals. [Or rates of decrease: 0.0033 m per oscillation and 0.0005 m per oscillation] consider rate of decrease (1)] Justify by noting the magnitude is larger at the start than at end of			2	2		2
	(c)	(i)	experiment. (1) When $n = 0$, $A = A_0 e^{\frac{0}{N}} = A_0 e^0 = A_0$			1	1	1	1
		(ii)	[Alternative: say $e^0 = 1$, so $A = A_0$.] $A = A_0 e^{-\frac{n}{N}}; \ 0.029 = 0.095 e^{-\frac{30}{N}} \text{ substitution (1)}$ $N = \frac{-30}{\ln(0.029)} \text{ or equiv } \rightarrow N = 25.28 \cong 25 \text{ answer (1)}$	1	1		2	2	2
	(d)	(i)	Oscillation number (n) Amplitude (A) /m 0 0.095 0 10 0.062 0.43 20 0.043 0.79 30 0.029 1.19 40 0.019 1.61 50 0.014 1.91 60 0.009 2.36 All three values correct (1) [accept 1.6, 1.9, 2.4 if consistent]		1		1	1	1
		(ii)	In $\left(\frac{A}{A}\right)$ 2.0 1.5 1.0 1.0 1.5 1.0 1.0	1	1 1		3	3	3
		(iii)				2	2		2
		(iv)	$\begin{aligned} & \text{Gradient} = \frac{2.35 - 0}{60 - 0} (\text{from graph}) = 0.039 \text{ ecf (1)} \\ & N = \frac{1}{\text{gradient}} (1) \\ & = 25.6 \text{ (1) Accept answers in range 25 - 26.} \\ & \text{Use of a point on the line - allow. Use of a data point not on the} \end{aligned}$			3	3	3	3
		(v)	line → 1st mark not available. Expected to be the one from (d)(iv) as straight line based on all points [The value in (c)(ii) is calculated from only a single point, which may be anomalous.]			1	1		1
			Question 6 total	3	7	9	19	14	19