- (i) | I ∝ V (1)

Providing the temperature / physical conditions remain constant (1)

2

1

Switch combination	P	Q	S	
X open, Y open	On	On	Off	
X closed, Y open	Off	On	Off	(
X open, Y closed	On	On	On	(
X closed, Y closed	Off	On	On	(

3

(ii) Either
$$R = \frac{9}{0.18}$$
 (1) (= 50 Ω) $\rightarrow R_P + R_Q = 50$ (1)

 R_{each} buzzer = 25[Ω] (1) ecf between 2nd and 3rd marks Or $R = \frac{4.5 (1)}{0.18}$ (1) = 25[Ω] (1)

3

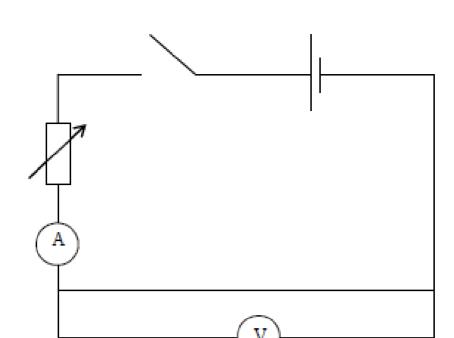
(iii)
$$R_{\text{Total}} = 16\frac{2}{3} [\Omega] (1)$$
 $I = \frac{9}{16\frac{2}{3}} = 0.54 [A] (1)$ ecf from (b)(ii) / no ecf for R_{Total}

2

(iv) Either ecf from (b)(ii) or (b)(iii) or both

$$P_S = \left(\frac{2}{3} \times 0.54\right)^2 \times 25$$
 (1) $P_S = 3.24$ [W]
 $P_Q = \left(\frac{1}{3} \times 0.54\right)^2 \times 25$ (1) $P_Q = 0.81$ [W]

$$P_Q = \left(\frac{1}{3} \times 0.54\right)^2 \times 25$$
 (1) $P_Q = 0.81$ [W]


$$P_S = \frac{9^2}{25}$$
 (1) = 3.24 [W] $P_Q = \frac{4.5^2}{25}$ (1) = 0.81 [W]

$$P_{\rm S} = \frac{2}{3} \times 0.54 \times 9$$
 (1)= 3.24 [W] $P_{\rm Q} = \frac{1}{3} \times 0.54 \times 4.5$ (1) = 0.81 [W]

$$\rightarrow \frac{3.24}{0.81} = 4$$
 (1) or any correct algebraic solution = 3 marks

3

(a)	(i)	Diagram to include Correct electric circuit with ohmmeter or power supply with ammeter + voltmeter with correct symbols and positioning	
		(1) • Method of heating shown (1)	
		 Method of recording temperature shown (1) 	3
	(ii)	Linear [or approximately linear] graph with positive gradient (1) and positive intercept on R axis (1).	2
		positive intercept on it talls (1).	_
b)	(i)	Conducting / delocalised / free electrons (1) collide (1) with metal lattice / atoms / ions (1) [not with other free electrons]	3
	(ii)	The greater the temperature the greater the vibrational energy of the lattice / metal ions (1) producing a greater chance [or rate] of	
		collisions/ collisions more often / greater frequency of collisions (1) [not harder].	2

Circuit (without voltmeter and ammeter) (1)

Voltmeter and Ammeter correctly positioned (1)

(ii)
$$R = \frac{10}{0.9}$$
 = 11.11 [Ω] (1)

$$A = 3.14 \times 10^{-8} \text{ [m}^2\text{]} (1)$$

$$\rho = \frac{11.11 \times 3.14 \times 10^{-8}}{3.2}$$
 (1) substitution $\rho = 1.09 \times 10^{-7} [\Omega \text{ m}]$ (1) ecf for R and A

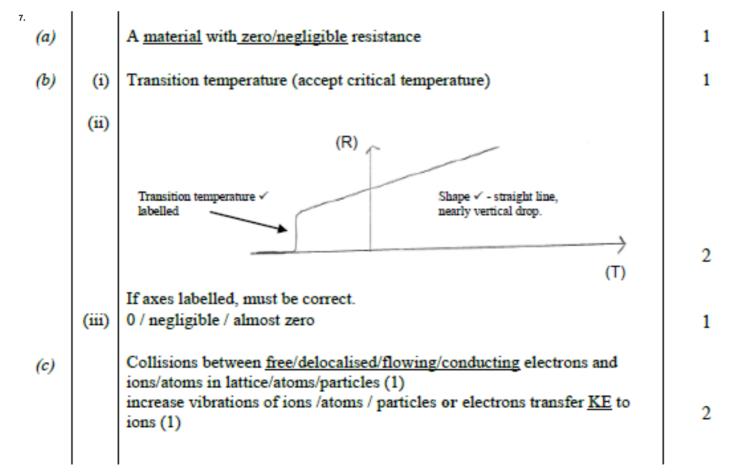
(iii) Platinum and Tin

$$\rho = \frac{0.74 \times 10^{-3}}{(3.14 \times 10^{-8} \times 3.2)(1)} = 7365 \text{ [kg m}^{-3}\text{] (1) ecf for A}$$

Tin (1) ecf from density value

2

4


1

3

Que	estion		Marking details	Marks Available
4	(a)	(i)	Water bath or method of heating shown. Wire [coiled or uncoiled] shown (1). Voltmeter and ammeter and power supply correctly connected or ohmmeter only shown (1) Thermometer clearly identifiable. (1) Subtract 1 mark for poorly drawn diagrams. Method of cooling water to 0 °C not credited here.	3
		(ii)	Method of cooling water to 0 °C (1) [Can be credited from (i)] Resistance values taken [or V and I values taken and R calculated](1)at different temperatures [minimum 5 implied or implication that a number of temperatures considered] (1) Method to reduce experimental error/ ensure accuracy e.g. water stirred/ resistance of leads/heat slowly/remove heat to allow temperature to settle (1) Accept repeat the experiment again or obtain readings whilst cooling down or using a digital thermometer. Don't accept just repeat readings.	
		71 5	Graph of R vs θ drawn (1)	5
	(b)	(i)	[-163 °C] is the temperature at which a sudden decrease in resistance occurs and the metal [alloy] (1)becomes a superconductor or resistance becomes zero (1)	2
		(ii)	Liquid nitrogen [Accept liquid helium, liquid oxygen, liquid hydrogen]	1
			Question 4 Total	[11]

5.

6. (a)	(i)	Ruler and wire shown and labelled (1) Moving pointer or jockey or crocodile clip indicated (1) Either: Correctly positioned ohmmeter with no power supply; or correctly positioned voltmeter and ammeter with power supply (1) [No labelling required for either method].	[3]
	(ii)	Diagonal line through origin	[1]
	(iii)	CSA from diameter of wire (1) Gradient from graph = (R/l) or (ρ/A) Or stated take a pair of R and l values from the graph (1) ρ = gradient × CSA or use of ρ = RA/l (1)	[3]
<i>(b)</i>	(i)	$R = \frac{144}{32} = 4.5 [\Omega] (1)$ Correct substitution into $R = \rho l/A$ (1) $l = 0.375 [m] (1) \text{ (ecf on } R)$	[3]
	(ii)	I = 2.7 [A] (from V/R or P/V etc) (1) (ecf on I) Correct substitution into $I = nAve$ (1) $v = 1.24 \times 10^{-2}$ [m s ⁻¹] (1) accept 0.01 m s ⁻¹	[3]
		Question 5 Total	[13]

	Question Marking details		Marks available						
	Question Marking details		A01	AO2	AO3	Total	Maths	Prac	
1.	(a)	(i)	The current [through a metal conductor at constant temperature] is proportional to the pd [across it] Accept $I \propto V$ with well-defined symbols.	1			1		
		(ii)	Constant [or independent of current [or pd]] (1)	1			1		
	(b)	(i)	pd across X = 0.70 [V] (1) or by impl so $R_{\rm X}$ = 58 [Ω] (1) or total resistance = 183 [Ω] (1) or by impl so $R_{\rm X}$ = 58 [Ω] (1)		2		2	2	
		(ii)	$R_{\rm X}$ = 16 [Ω] or equivalent (1) So Ohm's law not obeyed (1) [not freestanding] no ecf or If $R_{\rm X}$ stayed at 58 [Ω] (or 58.3 Ω), then I = 27 (or 26) mA (1) Not so, therefore Ohm's law not obeyed (1) no ecf			2	2	1	
		(iii)	$\underline{\text{No}}$. Filament resistance increases with increasing pd [or current] or equivalent ecf on calculated value of R_{X} in (b)(ii)			1	1		
	(c)	(i)	Temperature at which a material [that is classed as a superconductor] loses all its resistivity [accept resistance] [when cooled]. Accept " below which a material [] has no resistivity [accept resistance]"	1			1		
		(ii)	Coil for MRI machine, power cables, magnets / electromagnets or anything reasonable (1) Can be kept below transition temp [cheaply] by liquid nitrogen [accept: superconducts in liquid nitrogen] (1)	2			2		
			Question 1 total	5	2	3	10	3	0

AO1 AO2 AO3 Total Maths	Prac
Description: D1: At very low temperatures resistance of superconductor is zero ohms D2: Reference to transition temperature or critical temperature D3:where resistance suddenly drops to zero as temperature drops (or jumps up from zero as temperature rises) D4: Above transition temperature resistance increases with temperature D5: This increase in resistance with temperature is [approximately] linear [Sketch graph can show some of these points] Explanation: No explanation required for superconducting state. Above transition temperature: E1: As temperature increases, the ions in the metal lattice vibrate more quickly E2: Which makes it more likely that an electron will interact (accept collide) with the ion E3: So electrons lose kinetic energy and the drift velocity decreases E4:and collisions will cause ions to gain kinetic energy making further collisions more likely 5-6 marks Comprehensive description and explanation provided. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks	
attempt at both description and explanation. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks Limited attempt at description or explanation. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.	
(b) One benefit to society given for each application: Particle accelerator 1 × (1) from: Improve understanding of the nature of particles, Skilled workforce opportunities Have led to more powerful computing Particle discoveries used in everyday applications e.g. TV sets Well-reasoned economic benefits MRI scanner 1 × (1) from: Improved diagnoses and treatment of many ailments Skilled workforce opportunities Benefits more people Reasoned choice of application [1]	
Question 4 total 6 0 3 9 0	0