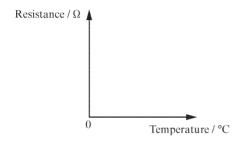

(a)	(i)	State Ohm's law.	[2]

(ii) The unit of resistance is the ohm (Ω) . One of the following is a correct alternative unit to the ohm. Circle the correct one.

$$VA^{-1} \qquad AV^{-1} \qquad JC^{-1} \qquad Js^{-1}$$

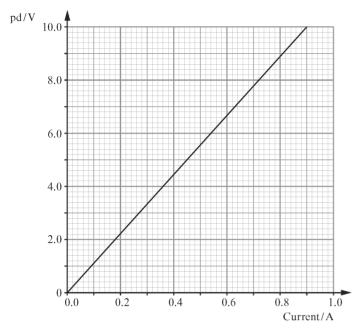
(b)



In the above circuit, buzzers $P,\,Q$ and S are controlled using switches X and Y. The buzzers are identical and their resistances remain constant.

(i) The table shows the possible combinations of open and closed switches. When a switch is closed, charge can flow through it. Complete the table. The first row has been done for you. [3]

Switch combination	P	Q	S
X open, Y open	On	On	Off
X closed, Y open			
X open, Y closed			
X closed, Y closed			


(ii) 	With X open and Y open, the ammeter reads 0.18 A. Calculate the resistateach of the buzzers.	[3]
	Determine the reading on the ammeter when all three buzzers are on.	
	When all three buzzers are on, show that $power used by \mathbf{S} = 4 \times power used by \mathbf{Q}$	

(b)	(i)	Explain in terms of particles how electrical resistance arises in metal conduct	tors. [3]
	(ii)	Hence suggest an explanation for your results to the experiment in part (a).	

Experiments are carried out to determine the material from which a metal wire is made. Initially the resistivity of the metal is found. The wire's density is then determined and the results compared with known values of resistivity and density.

(a) As a first step to finding the resistivity, an experiment investigates the relationship between pd and current for the wire. The results are shown in the graph.

(i) Draw a circuit diagram to show how the above results could be obtained. The apparatus available includes a battery, a switch, a variable resistor, an ammeter and a voltmeter. [2]

(ii)	The wire has length graph to calculate the			Formation and the [4]
(iii)	Using the information wire.	on in the table, write	down two possible	materials for the
***************************************				7
	Material	Resistivity / Ω m	Density/kg m ⁻³	
	Iron	0.97×10^{-7}	7 850	

Material	Resistivity / Ω m	Density/kg m ⁻³
Iron	0.97×10^{-7}	7 850
Platinum	1.06×10^{-7}	21 400
Tin	1.12×10^{-7}	7 300
Nichrome	1.10×10^{-6}	8400

The mass of the wire is found to be 0.74 grammes. Explaining how you obtain your answer, determine the material from which the wire is made. [3]

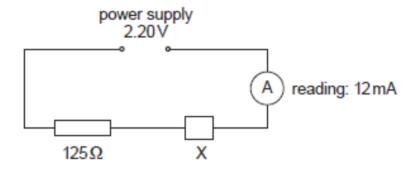
(a)	(i)	Show that the cross-sectional area of the cable is $4.0 \times 10^{-4} \mathrm{m}^2$.	
	(ii)	Calculate the current in the cable given that the pd across it is 2.0 kV.	[
	(iii)	Calculate the mean drift velocity of the free electrons in the cable given there are 6.0×10^{28} atoms per m ³ of aluminium and each atom contributes electrons.	3 fre [.
		nall portion of the cable is damaged. As a result its cross-sectional area is less of the rest of the cable, as shown in the diagram.	tha
	that	of the rest of the cable, as shown in the diagram.	
	that	State how the current in the thinner portion compares with the current in the	e re

(a)	(i)	Draw a labelled diagram of a suitable arrangement that would enable a student to investigate how the resistance of a metal wire changes between a temperature of 0 °C and 100 °C. [3]	

(11)	Describe r	now the stude	nt would:

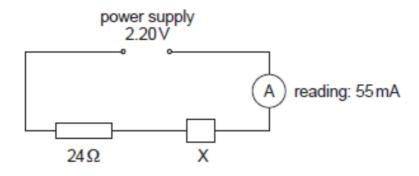
obtain measurements of resistance across the full temperature range;
ensure accurate results;
analyse the data obtained.

[5]


 (b) (i) A certain metal alloy has a superconducting transition temperature of -163°C Explain what is meant by the words in italics.
(ii) State how this alloy can be kept below its superconducting transition temperature. [1

(a) (i) Draw a labelled diagram of the apparatus you would use to determine the	
relationship between the resistance and length of a metal wire.	
	[S
(ii) Sketch a graph of your expected results.	
	[1]
Resistance A	
I .	
Length	
Length	
Length	
Length (iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	
(iii) Explain how you would use an accurately drawn graph of resistance against length,	
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire.	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional	[3
 (iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional area 4.0 × 10-8 m2. When it is in use the potential difference across 	[3
(iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional	[3
 (iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional area 4.0 × 10-8 m2. When it is in use the potential difference across the heater is 12.0 V and its power is 32 W. Calculate the length of the wire in the 	
 (iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional area 4.0 × 10-8 m2. When it is in use the potential difference across the heater is 12.0 V and its power is 32 W. Calculate the length of the wire in the 	[3
 (iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional area 4.0 × 10-8 m2. When it is in use the potential difference across the heater is 12.0 V and its power is 32 W. Calculate the length of the wire in the 	
 (iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional area 4.0 × 10-8 m2. When it is in use the potential difference across the heater is 12.0 V and its power is 32 W. Calculate the length of the wire in the 	
 (iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional area 4.0 × 10-8 m2. When it is in use the potential difference across the heater is 12.0 V and its power is 32 W. Calculate the length of the wire in the 	
 (iii) Explain how you would use an accurately drawn graph of resistance against length, as well as any other measurements, to obtain a value for the resistivity of the metal in the wire. (b) (i) A simple heater is made of a metallic wire of resistivity 48 × 10-8 Ω m and crosssectional area 4.0 × 10-8 m2. When it is in use the potential difference across the heater is 12.0 V and its power is 32 W. Calculate the length of the wire in the 	

(ii)	Calculate the drift velocity of the electrons in the wire when the heater is in use.	
	[The number of free electrons per unit volume is 3.4 × 1028 m-3 for the material in	
	the wire.]	
		[3]
-		—
-		


(a)	Wha	at is a superconductor?	[1]
(b)		etal conductor is placed in liquid helium. It is noted that at a certain temperature metal cools, its resistance changes suddenly, dropping rapidly to zero.	ıre,
	(i)	What name is given to the temperature at which this sudden change occurs?	[1]
	(ii)	Sketch a graph of resistance against temperature for the above conductor, labell any key features of your graph.	ing [2]
	(iii)	What potential difference would be needed to maintain a current in the conduction when it has been immersed in the liquid helium for some time?	ctor [1]
(c)	Con	ducting electrons in a superconductor do not cause a heating effect. Explain valucting electrons do produce a heating effect in wires at room temperature.	why [2]
	•••••		*****
***********	***********		******

(b) (i) An electrical component, X, is included in the circuit shown. The internal resistance of the power supply is negligible.

Show that the resistance of X in this circuit is approximately 60Ω .	[2]

(ii) When the 125Ω resistor in (b)(i) is replaced by a 24Ω resistor, the reading on the ammeter increases, as shown below.

	Evaluate whether or not X obeys Ohm's law, presenting your argument clearly.	[2]
(iii)	State, giving a reason, whether or not X could be a filament lamp.	[1]
A ce boili	ertain high temperature superconductor has a transition temperature of –188 °C. I ng point of liquid nitrogen is –196 °C.	The
(i)	State what is meant by the transition temperature of a superconductor.	[1]
(ii)	Give one possible use for a high temperature superconductor and state why it we be an advantage for the transition temperature to be above the boiling point of lic nitrogen.	ould quid [2]

4.	(a)] [6 QER]	

(b)	Superconductors are used in MRI scanners and particle accelerators. Consider which these two applications has been of greater benefit to society.	of 3]