-	Questio	n Marking details	Marks available					
	-		A01	A02	AO2 AO3 Total		Maths	Prac
3	(a)	Constant velocity (1) Substitution of $D = vT$ into Hubble's law and convincing algebra (1)	2			2	1	
	(b)	Substitution of H_0 & 3.09 × 10 ²² m into Hubble's law (gives 68 000 m/s) (1) Substitution [of at least c and λ] into Doppler equation (1)	1					
	$\Delta \lambda = \frac{68000 \times 486.1 \left[\times 10^{-9} \right]}{3 \times 10^8} \text{ seen (1) or 0.11 nm}$			1		3	3	
	(c)	Correct method for obtaining velocities e.g. $\frac{c\Delta\lambda}{\lambda}$ (1)						
		Blue shift speed is $[-]2v$ (-136 000) (1) and redshift speed is $6v$ (407 000 / 408 000) (1) Recessional speed = $2v$ (136 000) (1) Rotational speed = $4v$ (272 000) (1) NB Final mark awarded only if recessional speed and rotational speed clearly indentified.		5		5	5	
	(d)	Collation points C1 Doppler/red/blue shift measured C2 of [known] lines / wavelengths	6			6		
		C3 velocity calculated / measured / linked to $\Delta \lambda / \frac{\Delta \lambda}{\lambda} = \frac{v}{c}$						
		C4 for various distances from centre of galaxy [can be credited from good graph] C5 absorption spectrum used C6 mention of [large] telescope / analysis of light / em radiation observed						
		C7 mention of spectrometer / prism / grating / spectral analysis						
		Theory points T1 Doppler shift explained e.g. redshift, moving away T2 Doppler equation quoted or shift dependency on velocity mentioned						
		T3 Orbital speed increases with mass / $v = \sqrt{\frac{GM}{r}}$						
		T4 Orbital speed decreases with radius (theoretically) OR graph						
		or equation T5 Theoretical speed based on visible/baryonic mass OR graph						
		Results & Conclusion points R1 Speed does not decrease with radius / actual speed too large OR graph R2 Hence extra mass						
		R3 Dark matter linked to extra mass R4 Possible link to Higgs boson / WIMPS / CMBR						
		5 - 6 marks Expect 8-16 points There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.						
		3 - 4 marks Expect 5-7 points There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure.						
		1 - 2 marks Expect 1-4 points There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure.						
		0 marks No attempt made or no response worthy of credit.	_					
		Question 3 total	10	6	0	16	9	0

Question		Marking dataila		Marks available				
Questic	on	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(a)	(i)	Use of the equation $\frac{M_2d}{(M_1+M_2)} = x$ even if wrong $M_2(1)$	1					
		$\frac{9.2 \times 10^{24} \times 5.3 \times 10^{10}}{(9.5 \times 10^{-2} \{9.2 \times 10^{-2}\})^{24}} = seen (1)$	1			2	2	
		($\{\pm 9.2 \times 10^{24}\}$ can be omitted from the above equation) or 513 263 [m] seen etc.						
	(ii)	$v = \frac{2\pi r}{T}$ applied or $v = \omega r$ and $\omega = \frac{2\pi}{T}$ combined (1)	1	1				
		Conversion of 130 days $(130 \times 24 \times 3600)$ (1) Answer = 0.287 [m s ⁻¹] (ecf on day conversion) (1)	·	1		3	3	
	(iii)	Redshift is small or the redshift is proportional to velocity or small $\Delta\lambda$ or shown using the Doppler equation (1)						
		Small wavelength change is difficult to measure or shifted wavelength is too close to the original (1)		2		2		
(b)	(i)	$F = \frac{GMm}{r^2} \text{ used (1)}$	1	1		2	2	
	/···\	Answer = 2.08×10^{23} [N] (1)		<u>'</u>		2		
	(ii)	Method for obtaining stress i.e. $\frac{F}{A}$ (1) 1.35 × 10 ⁹ [Pa] (1) Correct conclusion e.g. the steel bar would break ecf (1) Theory doesn't work / Newton's grav law used successfully for centuries / won't work for elliptical orbits / would melt (1) Alternative: Use of $F = \alpha A$ (1) $F = 6.9 \times 10^{22}$ [N] (1)			4	4	2	
(c)	(i)	PE = $-\frac{GMm}{r}$ used N.B. ecf if PE = Fr used (1) Answer = [-]1.10 × 10 ³⁴ [J] (1)	1	1		2	2	
	(ii)	Realising KE is involved (1) Correct variation with distance for KE or velocity or as PE increases KE decreases or converse (1)			2	2		
		Question total	5	6	6	17	11	0

Question	Marking dataila		Marks available				
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(a)	Microwave laser or amplifier or equivalent (1) from water [molecules] or water clouds or steam (1) in gas disk around (supermassive) black hole (or quasar) (1) pumping or excitation provided by collisions (accept light) (1) (em radiation) propagates outwards (away from black hole) or reference to population inversion (1) Treat as neutral reference to watermaser. (Don't award the individual marks if later contradicted)	1 1 1	1 1		5		
(b) Appropriate wavelength or energy or frequency chosen e.g. 400 nm-700 nm or 2-3 eV or 4-8 × 10 ¹⁴ Hz (1) Valid method for obtaining ratio of frequencies, wavelength or energy (1) Answer 35 m[s] – 80 m[s] (1)		1	1 1		3	2	
(c)	3300 68.9 48 [Mpc] (1)		2		2	2	
(d)	Measure the velocity using Doppler shift or use of Doppler equation (1) at different times (1) acceleration = rate of change of velocity (1) Alternative: Measure the velocity using Doppler shift (1) Obtain v_{\max} (1) $a = \frac{v^2_{\max}}{r}$ or equivalent e.g. use v and r to calculate a (1)			3	3		
(e) (Use of $r = \frac{v^2}{a}$ (1) Acceleration conversion i.e. /365/24/3600 (1) Answer = 8.8×10^{14} [m] or 8.8×10^{11} k[m] (1)			3	3	3	
(i	Approximation used i.e. $D = \frac{r}{\theta}(1)$ Answer = 7.8×10^{14} [m] (1) Hence consistent (since overlap) i.e. valid conclusion based on calculations (1) Comparing e.g. 1.53 ± 0.15 and 1.73 ± 0.17 but also accept combined error = 20% or 8.8×10^{14} is less than 20% bigger than 7.8×10^{14} (1)			4	4	2	
	Question total	4	6	10	20	9	0

Question		on	Marking details		Marks available						
			A01	AO2	AO3	Total	Maths	Prac			
3	(a)	(i)	Planets / masses orbit in ellipses (with the Sun at a focus) (1) [Line from planet to Sun] sweeps equal area(s) in equal time(s) or sweeps area at a constant rate (1) Sun at a focus & line from planet to Sun (or radius vector) (1)				3				
		(ii)	$\frac{GMm}{r^2} = \frac{mv^2}{r} \text{ or } mr\sigma^2 \text{ (1)}$ Substitution of $\omega = \frac{2\pi}{T}$ or equivalent i.e. $v = \frac{2\pi r}{T} \text{ (1)}$ Intermediate step seen e.g. $\frac{GMm}{r^2} = m\frac{4\pi^2}{T^2}r \text{ (1)}$ Alternative: $T = 2\pi \sqrt{\frac{d^3}{G(M_1 + M_2)}} \text{ (1)}$ $M_2 = 0 \text{ or implied (1)}$ $d = r \text{ and } M_1 = M_E \text{ (1)}$	3			3	3			
	(b)		Period of geostationary = 1 day (24 hr etc.) (1) Use of Kepler e.g. $\frac{T_1^2}{r_1^3} = \frac{T_2^2}{r_2^3}$ [accept substitution with 5.97×10^{24}] (1) Correct answer = 27.2 [days] (2.35×10^6 s) (1) Alternative: Substitution into period equation (1) Algebra (1) Correct answer = 27.2 [days] (2.32×10^6 s) (1)	1	1		3	2			
	(c)		Assumption - Radius cannot be less than r_{Ξ} (or inside Earth's surface etc.) or ignore mountains/air resistance accept no atmosphere or Earth is totally smooth (1) Use of Kepler or accept equation use again (1) Correct answer = 1.42h, $\frac{1}{16.9}$ of a day, 5 100 s etc. (accept slightly larger due to, e.g. r_{Ξ} = 6470 km to be above atmosphere etc. which gives 1.45 h) (1)		3		3	2			
			Question 3 total	8	4	0	12	7	0		