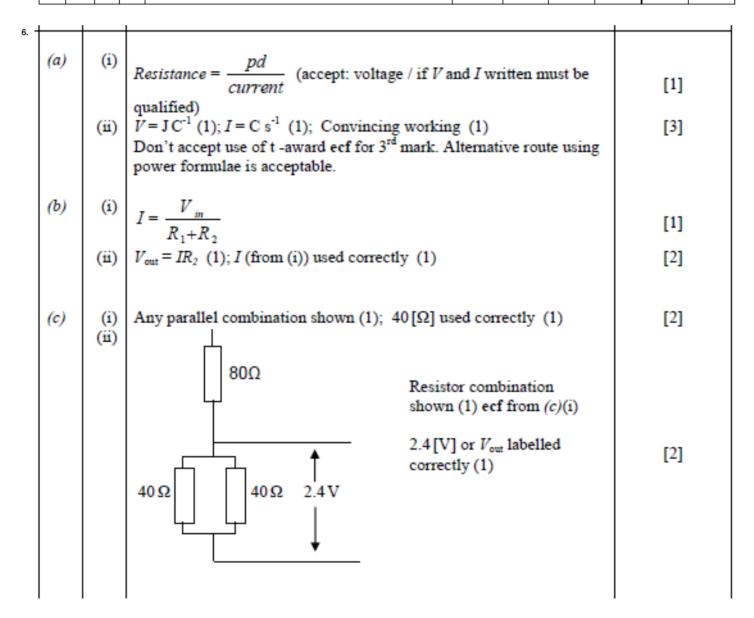
Marking Scheme

Г	Question		Marking details		Marks a	vailable			
	Quest	юп	Marking details	A01	AO2	AO3	Total	Maths	Prac
1	(a)	(i)	Resistance of LDR / circuit increases [as light intensity decreases] (1) [Hence] current decreases (1)	2			2		2
		(ii)	Current in LDR = $\frac{4.0}{2.4 \times 10^3}$ = [1.67 × 10 ⁻³ A] (1) $R = \frac{5.0(1)}{1.67 \times 10^3}$ $R = 3.0 \text{ k}\Omega$ (1) Alternative: $4.0 = \frac{2.4 \times 10^3 \times 9.0}{(2.4 \times 10^3 + R)}$ (1) [substitution into potential divider equation] Correct algebra (1) $R = 3.0 \text{ k}\Omega$ (1) Alternative: $\frac{4}{5}$ 1) = $\frac{2.4}{R}$ $R = 3.0 \text{ k}\Omega$ (1)	1	1 1		3	2	3
	(b)		Light from lamp will decrease [LDR resistance and hence] <i>V</i> across lamp low so lamp not activated (1) Hence reason for on/off, e.g. lamp off → LDR in dark → <i>V</i> _{out} high → lamp on		2		2		2
	Question 1 total		3	4	0	7	2	7	


	Questi	ion	Marking details	Marks available					
			_	A01	A02	AO3	Total	Maths	Prac
2	(a)	(i)	Rate of charge flow Accept $I = \frac{\Delta Q}{\Delta t}$ only if ΔQ and Δt defined [accept Q and t]	1			1		
		/SIN	Δt J C ⁻¹ and C s ⁻¹ as units of V and I respectively clearly shown (1)						
		(II)		1					
			Correct division seen i.e. $\frac{JC^{-1}}{Cs^{-1}}$ seen (1)		1		2	1	
			Or from alternative correct expression, e.g. $R = \frac{V^2}{P} \sim 0 \text{ so}$						
\vdash	(b)	/i\	Or equivalent in terms of quantities. I through $R_P = 1.2 \text{ A}$ and I through $R_T = 0.8 \text{ A}$ (1)						
	(D)	(1)							
			$\frac{V_{\rm p}}{V_{\rm T}} = \frac{1.2R_{\rm p}}{0.8R_{\rm T}}$ (=1.5) seen (1)		2		2	1	
		Or							
			Parallel combination calculated as $\frac{2}{3}R(1)$						
		Potential divider: $\frac{R}{R + \frac{2}{3}R} \times 9 = 1.5 (1)$							
		(ii)	$2.5V_{\rm T} = 9.0 \text{ or } \frac{5V_{\rm p}}{3} = 9.0 \text{ (1)}$						
			$V_T = 3.6 \text{V}$ or $V_P = 5.4 \text{V}$ (1) Award 2 marks for either V_P or V_T calculated correctly.		3		3	3	
			$R_{\rm T} = \frac{3.6}{0.8} = 4.5 \Omega \text{ or } R_{\rm p} = \frac{5.4}{1.2} = 4.5 \Omega \text{ or } \frac{1.8}{0.4} = 4.5 \Omega(1)$,		3	,	
			0.0 1.2 0.4						
			Alternative:						
			Total circuit $R = \frac{9.0}{1.2} = 7.5 \Omega (1)$						
			Parallel and series combination shown to be = $\frac{5R}{3}$ (1)						
			$\frac{5R}{3} = 7.5 \text{ and } R = 4.5 \Omega \text{ (1)}$						
			Alternative:						
		Understanding that $V_p + V_T = 9$ (1) 1.2 $R_p + 0.8R_T = 9$ (1) (award 2 marks for this only)							
			$R_p = R_T = R$ and $R = \frac{9}{2} = 4.5 \Omega$ clearly shown (1)						
			Accept reverse argument.						
	(c)		P (circuit) = 10.8 W (1) (either $\frac{81}{7.5}$ or $(1.2)^2 \times 7.5$ or 1.2×9)						
			7.5 P in $R_0 = (0.4)^2 \times 4.5 = 0.72 \text{ W (1)}$						
					_		_	_	
			10.8 = 15 seen (1)		3		3	2	
			Alternative: $P_s = P_O$ since $I_s = I_O$						
			$P_{\rm T} = 4 \times P_{\rm Q} \text{ since } I_{\rm T} = 2 \times I_{\rm Q}$						
			$P_P = 9 \times P_Q$ since $I_P = 3 \times I_Q$ Hence total circuit power = $P_Q + P_Q + 4P_Q + 9P_Q$						
			= 15P _Q Award (1) for correct individual power analysis						
			Award (1) for correct individual power analysis Award (1) for correct reason linked to currents						
<u> </u>	(d)		Award (1) for showing correct total P Circuit resistance increases, leading to total current decreasing.		3		3		
	(4)		Power dissipated in circuit decreases (1)						
			V across R_Q has increased (from 1.8 V to 3.0 V), so P_Q increases / I through R_Q has increased (from 0.4 A to 0.67 A) so P_Q						
			increases (1)						
			Hence ratio decreases (1) [only award from correct explanation]						
			Accept numerical explanation: e.g.						
			Circuit resistance is now 13.5 Ω and circuit current = 0.67 A (1) circuit power shown to be 6 W and P_Q shown to be 2 W (1)						
			Hence ratio decreases or is now 3 (1)						
			Alternative:						
			With T removed, I through all remaining resistors is the same or V across each is the same (1)						
			Use of VI or I^2R or V^2/R or power / energy dissipated in all three						
			resistors equal (1) So total $P = 3 \times P_0$ or which is less than $15P_0(1)$						
					40	•		-	
			Question 2 total	2	12	0	14	7	0
Ь—									

^	
.1	

	Question		Marking details		Marks a	vailable			
'	Juest	ion	marking details	A01	AO2	AO3	Total	Maths	Prac
2	(a)		There are 6 J of energy/work done (converted from electrical to other forms) (1) Per coulomb of charge between X and Y (1)	2			2		
	(b)	(i)	Attempt to use equation to determine resistors in parallel (1) Resistance of parallel combination = $3.7[2] \Omega$ (1) Total circuit resistance = 9.3Ω ecf on parallel (1) Current = $\frac{V}{R}$ = 0.64 A [accept 0.65 A] answer to 2 d.p. (1)	1	1 1 1		4	3	
		 (ii) Apply ecf from part (b) (i) PD across parallel = 0.65 × 3.7 ecf OR pd across 5.6 Ω = 0.65 × 5.6 = 3.6 V (1) Answer = 2.4 V (1) (iii) Substitute values into P = I²R [P = 0.65²× 3.7] (1) P = 1.54 W - ecf (1) Question 2 total 			2		2	1	
				1	1		2	2	
				4	6	0	10	6	0

^{4.} (a)	(i)	$R = \frac{1.6}{15 \times 10^{-3} (1)} \text{ (reading from graph, accept } 14 \times 10^{-3}\text{)}$	
		R = 107 Ω [answers in range 107 – 114 Ω]	2
	(ii)	[Very] high [accept infinite]	1
(b)	(i)	V not proportion to I / not a straight line [through the origin] ["Not through origin" insufficient on its own]	1
	(ii)	Bulb / thermistor [Not wire or superconductor, but accept superconducting device, e.g. superconducting electromagnet coil]	1
(c)		$R = \frac{V}{I}(1)$; $R = \frac{10.4(1)}{15 \times 10^{-3}} = 693 \Omega (1)$	3
		Alt 1: $10.4 = \frac{R}{R + 107} \times 12$ [or equiv.] (1)	
		manipulation e.g. $10.4R + 112.8 = 12(1)$; $R = 696 \Omega (1)$	
		Alt 2: $R_T = \frac{V}{I}$ or $\frac{12}{1.5 \times 10^{-3}}$ (1) = 800 Ω (1); R 800 – 107 = 693 Ω (1)	[8]
	I	I	

	Outon	tion	Marking dataile	Marks available					
Question		Marking details	A01	AO2	AO3	Total	Maths	Prac	
3.	(a)		In a <u>water</u> bath or in a beaker of <u>water</u> must imply heading (1) Using ice cubes / taking water from fridge / in an ice bath or equivalent (1)	1		1	2		2
	(b)	(i)	Straight line of best fit drawn (from 18 – 100 °C) with points either side or reference to very little scatter in the readings (1) Reference to or comparison with $y = mx + c$ (1) Positive intercept or positive gradient (1)		1	1	3		3
	(ii) I 5.5 Ω, 5.6 Ω or 5.7 Ω unit mark [Accept attempts at 3 sf]			1		1	1	1	
	Either Readings from graph line inserted in $\frac{\Delta R}{\Delta \theta}$. Tolerate slips (1) Gradient = 0.023 [\pm 0.002] [Ω °C ⁻¹] or by implication (1) α = 3.9 [\pm 0.4] ×10 ⁻³ °C ⁻¹ unit mark ecf on R_0 and gradient (1) Or Value of R_0 and (R , θ) values from another point on graph line inserted in equation. Tolerate slips (1) Correct algebra (1) α = 3.9 [\pm 0.4] ×10 ⁻³ °C ⁻¹ unit mark ecf on R_0				1 1 1	3	3	3	
			Question 3 total	1	2	6	9	4	9

7.	(a)	1	(i)	$I \propto$	V(

Providing the temperature / physical conditions remain constant (1)

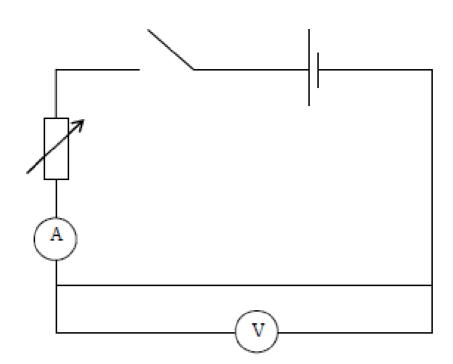
Switch combination	P	Q	S	
X open, Y open	On	On	Off	
X closed, Y open	Off	On	Off	(
X open, Y closed	On	On	On	(
X closed, Y closed	Off	On	On	(

(ii) Either
$$R = \frac{9}{0.18}$$
 (1) (= 50 Ω) $\rightarrow R_P + R_Q = 50$ (1)

 R_{each} buzzer = 25[Ω] (1) ecf between 2nd and 3rd marks Or $R = \frac{4.5 (1)}{0.18}$ (1) = 25[Ω] (1)

(iii)
$$R_{\text{Total}} = 16\frac{2}{3} [\Omega] (1)$$
 $I = \frac{9}{16\frac{2}{3}} = 0.54 [A] (1)$ ecf from (b)(ii) / no ecf for R_{Total}

$$P_{\rm S} = \left(\frac{2}{3} \times 0.54\right)^2 \times 25$$
 (1) $P_{\rm S} = 3.24$ [W]
 $P_{\rm Q} = \left(\frac{1}{3} \times 0.54\right)^2 \times 25$ (1) $P_{\rm Q} = 0.81$ [W]


$$P_Q = \left(\frac{1}{3} \times 0.54\right)^2 \times 25$$
 (1) $P_Q = 0.81$ [W]

$$P_S = \frac{9^2}{25}$$
 (1) = 3.24 [W] $P_Q = \frac{4.5^2}{25}$ (1) = 0.81 [W]

$$P_{\rm S} = \frac{2}{3} \times 0.54 \times 9$$
 (1)= 3.24 [W] $P_{\rm Q} = \frac{1}{3} \times 0.54 \times 4.5$ (1) = 0.81 [W]

$$\rightarrow \frac{3.24}{0.81} = 4$$
 (1) or any correct algebraic solution = 3 marks

Circuit (without voltmeter and ammeter) (1)

Voltmeter and Ammeter correctly positioned (1)

(ii)
$$R = \frac{10}{0.9}$$
 = 11.11 [Ω] (1)

$$A = 3.14 \times 10^{-8} \text{ [m}^2\text{]} (1)$$

$$\rho = \frac{11.11 \times 3.14 \times 10^{-8}}{3.2}$$
 (1) substitution $\rho = 1.09 \times 10^{-7} [\Omega \text{ m}]$ (1) ecf for R and A

(iii) Platinum and Tin

$$\rho = \frac{0.74 \times 10^{-3}}{(3.14 \times 10^{-8} \times 3.2)(1)} = 7365 \text{ [kg m}^{-3}\text{] (1) ecf for A}$$

Tin (1) ecf from density value

2

3

(i) [For a metallic conductor] the potential difference and current are [directly] proportional/ I α V (1), provided the temperature remains constant / all physical factors remain constant (1)

V = IR only no marks

(ii) It is constant / stays the same /increases as the temperature increases 2 (i) $A = 1.5(3) \times 10^{-8} [\text{m}^2](1)$ $R = \frac{\rho l}{A} = \frac{95 \times 10^{-8} \times 3.2}{1.5(3) \times 10^{-8}} (1) = 199 [\Omega] (1)$ 3 (ii) $\frac{230^2}{200} = 265 \text{ [W] allow e.c.f. from (b)(i)}$ (iii) $\frac{1}{66.7(1)} = \frac{1}{200} + \frac{1}{R_2}(1)$ $R_2 = 100 \text{ [}\Omega\text{] (1)}$ (iv) $R_2 \text{ (1) either reference to } \frac{V^2}{R} \text{ so lower } R \text{ / same V across lower R}$ or reference to I^2R so greater I or reference to IV so I increased [for constant V] or correct calculation of R_2 (1)
(v) $\frac{230}{66.7} = 3.5 \text{ [A] allow e.c.f. from (b)(iii)}$ 1 3 2

1

(i) [For a metallic conductor] the potential difference and current are (a) [directly] proportional/ I a V (1), provided the temperature remains constant / all physical factors remain constant (1) 2 V = IR only no marks (ii) It is constant / stays the same /increases as the temperature increases $R = \frac{\rho l}{A} = \frac{95 \times 10^{-8} \times 3.2}{1.5(3) \times 10^{-8}} (1) = 199 [\Omega] (1)$ $\frac{230^2}{200}$ = 265 [W] allow e.c.f. from (b)(i) 1 3 R_2 (1) either reference to $\frac{V^2}{R}$ so lower R / same V across lower R or reference to I^2R so greater I or reference to IV so I increased [for constant V] or correct calculation of $R_2(1)$ 2 (v) $\frac{230}{66.7}$ = 3.5 [A] allow e.c.f. from (b)(iii)

4	\sim	
	u.	

	Oue	stion	Marking details	Marks available					
	Que	SUOII	marking details	A01	AO2	AO3	Total	Maths	Prac
2	(a)		$I = 0.0012 \mathrm{A}$ and $R_{\mathrm{tot}} = 5000 \Omega$ or $V_{\mathrm{therm}} = 4.80 \mathrm{V}$ or $\frac{R_{\mathrm{th}}}{1000 \Omega} = \frac{4.8 \mathrm{V}}{1.2 \mathrm{V}}$ or any other correct and relevant potential divider equation or by implication (1) $R_{\mathrm{therm}} = 4000 \Omega$ (1) $\theta = 15^{\circ} \mathrm{ecf}$ on $R_{\mathrm{therm}}(1)$		3		з	3	
	(b)		Graph gradient changes [with θ] or graph not straight [or voltmeter reading doesn't vary linearly with R_{thems}] or ΔV not proportional to ΔR (1) n not constant [with varying θ] / he is wrong [only award if backed up by reasonable argument] (1)			2	2	1	
	(c)		So thermistor [accept: 'it'] doesn't heat up (1) Reference to electrical heating [even of circuit or resistor] or masking response to surroundings (or equiv) (1)		2		2		
			Question 2 total	0	5	2	7	4	0

11. <i>(a)</i>	(i) (ii)	[Rate of] flow of charge $I = \frac{Q}{t}$ or $\frac{dQ}{dt}$ with Q defined $C s^{-1}$	1 1
<i>(b)</i>	(i) (ii)	x = y + z charge	1 1
(c)	(i)	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \text{ or } R = \frac{R_1 R_2}{R_1 + R_2} \text{ of by impl. (1)}$	
		$R_{\parallel} = 30 \ \Omega \ (1); R_{\text{Total}} = 40 \ \Omega \ (1) \ [\text{no e.c.f.}]$	3
	(ii)	[Current $x = $] 0.15 A e.c.f. [Accept equiv., e.g. $^{6}/_{40}$, but not 0.2A without working]	1
	(iii)	$V_1 = 0.15 \times 10 = 1.5 \text{ V} (1) = \text{e.c.f.}$ $V_2 = 6 - 1.5 = 4.5 \text{ V} = 1.5 = 4.5 \text{ V} (1) = 1.5 \text{ V} ($	2
	(iv)	$y = \frac{4.5}{120} [= 0.038 \text{ A}] (1)$ $z = 0.15 - 0.038 \text{e.c.f.} [= 0.11 \text{ A}] \left[\text{or } \frac{4.5}{40} [= 0.11 \text{ A}] \right] (1)$	
		$z = 0.15 - 0.038$ e.c.f. [= 0.11 A] or $\frac{4.5}{40}$ [= 0.11 A] (1)	2
		[Accept solutions based upon ratios, e.g. $y = \frac{0.15}{4}$]	[12]

Que	stion		Marking details	Marks Available
2	(a)		VA^{-1} and WA^{-2} 2 × (1)	2
	(b)	(i)	$V = 0.01 \times 450 = 4.5 [V]$	1
		(ii)	12 V - 4.5 V [ecf] = 7.5 [V]	1
		(iii)	$R = \frac{7.5}{0.01}$ (1 for correct use of 7.5 or ecf) = 750 [Ω] (1) or correct	2
			alternative	
		(iv)	$\frac{1}{750} = \frac{1}{900} + \frac{1}{R}$ (1) (substitution) $R_{\text{variable resistor}} = 4500 [\Omega] $ (1)	2
			Alternative solution to (iii) and (iv) I through $900 \Omega = \frac{7.5}{900} = 0.0083 [A] (1)$ I through variable resistor = $0.0017 [A] (1)$ $R_{\text{variable resistor}} = \frac{7.5}{0.0017} = 4500 [\Omega] (1)$ Use of resistors in parallel formula to find total parallel resistance =	
			750 [Ω] (1)	

Question	Marking details	Marks Available
(c)	[No mark for stating circuit resistance decreases] Current in circuit increases (1) [accept explanation based on potential divider. Hence pd across 450Ω increases (1) Hence pd across 900Ω decreases (1) this mark can't be awarded unless it is correctly substantiated Alternative solutions: Resistance of parallel combination decreases (1) pd across parallel combination decreases (1) pd across 900Ω decreases (1) OR current through the variable resistor increases (1) current through the 900Ω decreases (1) pd across the 900Ω decreases (1)	3
	Question 2 total	[11]

	Oussti		Marking dataila			Marks	available		
	Questi	Question Marking details		A01	AO2	A03	Total	Maths	Prac
1.	1. (a) (i)		The current [through a metal conductor at constant temperature] is proportional to the pd [across it] Accept $I \propto V$ with well-defined symbols.	1			1		
		(ii)	Constant [or independent of current [or pd]] (1)	1			1		
	(b) (i)		pd across X = 0.70 [V] (1) or by impl so $R_{\rm X}$ = 58 [Ω] (1) or total resistance = 183 [Ω] (1) or by impl so $R_{\rm X}$ = 58 [Ω] (1)		2		2	2	
		(ii)	$R_{\rm X}$ = 16 [Ω] or equivalent (1) So Ohm's law not obeyed (1) [not freestanding] no ecf or If $R_{\rm X}$ stayed at 58 [Ω] (or 58.3 Ω), then I = 27 (or 26) mA (1) Not so, therefore Ohm's law not obeyed (1) no ecf			2	2	1	
		(iii)	$\underline{\text{No}}$. Filament resistance increases with increasing pd [or current] or equivalent ecf on calculated value of R_X in (b)(ii)			1	1		
	(c)	(i)	Temperature at which a material [that is classed as a superconductor] loses all its resistivity [accept resistance] [when cooled]. Accept " below which a material [] has no resistivity [accept resistance]"	1			1		
		(ii)	Coil for MRI machine, power cables, magnets / electromagnets or anything reasonable (1) Can be kept below transition temp [cheaply] by liquid nitrogen [accept: superconducts in liquid nitrogen] (1)	2			2		
			Question 1 total	5	2	3	10	3	0

1	4.	

	Questi	or	Marking dataila						
L		on			AO2	AO3		Maths	Prac
4	(a)	OII .	Indicative content: Description: D1: At very low temperatures resistance of superconductor is zero ohms D2: Reference to transition temperature or critical temperature D3:where resistance suddenly drops to zero as temperature drops (or jumps up from zero as temperature rises) D4: Above transition temperature resistance increases with temperature D5: This increase in resistance with temperature is [approximately] linear [Sketch graph can show some of these points] Explanation: No explanation required for superconducting state. Above transition temperature: E1: As temperature increases, the ions in the metal lattice vibrate more quickly E2: Which makes it more likely that an electron will interact (accept collide) with the ion E3: So electrons lose kinetic energy and the drift velocity decreases E4:and collisions will cause ions to gain kinetic energy making further collisions more likely 5-6 marks Comprehensive description and explanation provided. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks Comprehensive description or explanation. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks Limited attempt at description or explanation. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.	A01 6	AO2	AO3	Total 6	Maths	Prac
	(b)		One benefit to society given for each application: Particle accelerator 1 × (1) from: Improve understanding of the nature of particles, Skilled workforce opportunities Have led to more powerful computing Particle discoveries used in everyday applications e.g. TV sets Well-reasoned economic benefits MRI scanner 1 × (1) from: Improved diagnoses and treatment of many ailments Skilled workforce opportunities Benefits more people Reasoned choice of application [1]			3	3		
			Question 4 total	6	0	3	9	0	0
	\sqcup								

			Marking dataila	Marks available					
u	uestic	on	Marking details	A01	A02	A03	Total	Maths	Prac
1	(a)		V- Energy (per coulomb or unit charge) used in external resistor/circuit [1] E- Energy (per coulomb/unit charge) transferred by source [or from chemical energy or from other forms] or used in whole circuit [1] Ir – energy (per coulomb/unit charge) wasted/lost in source or due to internal resistance [1] Use of 'per coulomb' or 'unit charge' at least once [1]	4			4		
	(b)	(i)	Circuit current = $\frac{1050 \times 10^{-3}}{2.5}$ = 0.42 [A] [1]						
			Total internal resistance = $\frac{0.5}{0.42}$ = 1.2 [Ω] ecf on I [1] r_{cell} = 0.6 [Ω] [1]		3		3	2	
		(ii)	Substitution into I^2rt i.e. $(0.42)^2 \times 0.6 \times 60$ (ecf on I, r) [1]	1					
			Alternative: Substitution into $\frac{V^2t}{r}$ i.e. $\frac{(0.25)^2 \times 60}{0.6}$ (ecf on V , r) Alternative: Substitution into IVt i.e. $0.42 \times 0.25 \times 60$ (ecf on I , V) Energy dissipated = 6.3 [J] [N.B. Alternative \rightarrow 6.4 J] [1]		1		2	1	
	(6)		Either: Total resistance of coils in parallel = 2.975 [Ω] [1] and total circuit resistance = 4.175 [Ω] ecf [1] New current in circuit = $\frac{3}{4.175}$ = 0.72 [A] [1] For the 4 th mark: Rate of energy dissipation in each cell = $(0.72)^2 \times 0.6 = 0.31$ [W] so Kiera correct (or ratio calculated to be approx. 3) Or Energy dissipated in each cell in one minute = $(0.72)^2 \times 0.6 \times 60 = 18.6$ [J] so Kiera correct (or ratio calculated to be approx. 3) [1] Alternative: Total resistance of coils in parallel = 2.975 [Ω] [1] and total circuit resistance = 4.175 [Ω] ecf [1] New current = 0.72 [A] and pd drop across internal resistance = 0.72 × 1.2 = 0.86 [V] [1] Rate of energy dissipation in each cell For the 4 th mark: = $\frac{(0.43)^2}{0.6}$ = 0.31 [W] so Kiera correct (or ratio calculated to be approx. 3) Or Energy dissipated in each cell in one minute = $\frac{(0.43)^2 \times 60}{0.6}$ = 18.6 [J] so Kiera correct (or ratio			4	4		
			calculated to be approx. 3) [1] Question 1 total	5	4	4	13	3	0
			Question i total	J	4	4	13	3	U

6.							Marks a	vailable			
		Que	stion		Marking details	A01	A02	AO3	Total	Maths	Prac
	1	(a)	(i)		Energy (or work) /charge or energy (or work) per coulomb [accept joules per coulomb] (1) The above put correctly into context, e.g. Energy given by battery / energy transfer from chemical [or to electrical]. [Free standing mark] (1)	1			2		
			(ii)		Method 1 $I = \frac{4.33 \text{ V}}{6.60 \Omega} [= 0.656 \text{ A}] \text{ or by implication (1)}$ $r = \frac{4.80 [\text{V}] - 4.33 [\text{V}]}{0.656 [\text{A}]} = 0.71 / 0.72 / 0.7 \Omega \text{ (1)}$ Method 2 Any correct and relevant pot div equation e.g. $\frac{r}{6.6 \Omega} = \frac{4.80 \text{ V} - 4.33 \text{ V}}{4.33 \text{ V}} \text{ or } 4.33 = \frac{4.80 \times 6.60}{r + 6.60} \text{ (1)}$ $r = 0.71 / 0.72 / 0.7 \Omega \text{ (1)}$ See additional guidance for methods assuming 0.7 Ω	1	1		2	2	
			(iii)	1	More current (1) Therefore greater Ir [accept: greater lost volts] (1) NB $V = E - Ir$ on its own doesn't score. or Ratio (ext res)/ r lower (1) So ratio (ext pd)/(pd aross r) less (1) or equivalents	1	1		2		
				II	Current in either resistor = $\frac{3.35}{3.30}$ [= 1.02 / 1.015 A](1) Division by e at any stage (1) [e.g. \rightarrow 61 C] Electrons in 1 minute = 3.8×10^{20} C, ecf on I [NB electrons through parallel combination = $7.6 \times 10^{20} \rightarrow (2)$]		3		3	2	
		(b)	(i)		$R = \frac{V^2}{P} \text{ or } \left[I = \frac{1000 \text{ W}}{230 \text{ V}} \text{ and } R = \frac{V}{I} \right] (1)$ $R = 53 \Omega \text{ [accept early rounding] (1)}$	1	1		2	2	
		(c)	(ii)		3.6 [MJ] If electric heating is used rather than gas, for a given heating effect more CO2 produced [or more gas, a non-renewable resource [accept: fossil fuel] is used]. (1) Greater contribution to climate change/global warming [so use of electric heaters should be discouraged] (1) Any one of • [But] higher cost of electricity [per kW] is discouragement enough • [But] not all power stations are gas-fired. [Some eg nuclear, wind, don't produce CO2] • [But] not all homes have gas available • CO2 absorbs long-wavelength infrared (or infrared emitted from Earth's surface) in context of climate change • Any other relevant and non-trivial point e.g. safety issue with naked flames / CO emission / gas leaks Example of point not worth credit: "it's none of anyone else's business how I heat my home" – the word in the question was "discouraged" / electric heaters more expensive to run		1	3	3	1	
					Question 1 total	5	7	3	15	7	0

Additional guidance for 1(a)(ii)

Method 3

[Assuming that] $r = 0.7 \Omega$:

Total resistance = 7.30 Ω

:. Current =
$$\frac{4.80[V]}{7.30[\Omega]}$$
 = 0.658 A (1)

Terminal pd, $V = E - Ir = 4.80 - 0.685 \times 0.7$

So the initial assumption is correct

Method 4

[Assuming that] $r = 0.7 \Omega$:

[Total resistance = 7.30 Ω]

Using the potential divider equation:
$$V = E \times \frac{R}{R+r} = 4.80 [V] \times \frac{6.60 [\Omega]}{7.30 [\Omega]} \text{ equation used correctly}$$

_	uestio		Marking dataile		Marks available						
Q			Marking details	A01	AO2	AO3	Total	Maths	Prac		
4	(a)	(i)	Using $R = \frac{\rho l}{A}$ (1)	1							
			Area = $\frac{\pi d^2}{4}$ = 6.16 × 10 ⁻⁸ m ² (1)		1						
			Resistivity = 1.62 × 10 ⁻⁸ Ωm unit mark (1)		1		3	2			
		(ii)	$p_{I} = \frac{0.1}{32.4} \times 100\% = 0.3\%$ or statement – negligible (1) $p_{A} = 2 \times p_{A} = 7.1\%$ (1) Total percentage uncertainty = 12% (ecf) (1)								
			Abs unc (resistivity) = $\pm 0.2 \times 10^{-8} [\Omega \text{m}]$ to 1 sf maximum (ecf) (1)		4		4	4	4		
		(iii)	Silver and copper lie within range of values (ecf) (1) Material cannot be determined exactly from table (1)			2	2				
	(b)	(i)	Current is flow of (free) electrons (1) Flow is obstructed by <u>collisions with ions</u> (1) Collisions increase as temperature increases (1) Because of increased vibrations of ions/lattice <i>or</i> random speed of electrons increases (1)	4			4				
		(ii)	Using $R = \frac{V}{I}$ or proportional to $\frac{1}{I}$ OR temperature is inversely proportional to current (V constant) (1) Determining constant for at least 3 values dependent on method $k = \frac{R}{\text{Temperature}}$ or Temperature x I (1) Conclusion — not constant (accept directly proportional if temperature in kelvin) (1)			3	3	2	3		
			Question 4 total	5	6	5	16	8	7		

18.

	atia		Marking dataila	Marks available						
6	(uestio	n	Marking details	A01	A02	AO3	Total	Maths	Prac	
5	(a)	(i)	All resistors connected in parallel (1) $Using \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} [or equiv] (1)$ $R_{total} = 1.44 [\Omega] (1)$	1	1		3	2	3	
	(b)	(i)	(A4/emf) is the energy generated in the cell (1) per coloumb (1) Loss of energy in circuit in the load resistor (E4) (1) $E-V$ is the energy is lost in internal resistance (1) Energy is conserved (1) Re-arrange gives $r=\frac{E-V}{I}$ (1)	1	1 1 1		6	1		
		(ii)	Substituting values in $\frac{A7-E7}{D7}$ (1) $r = 0.15 [\Omega]$ (1)	1	1		2	2		
		(iii)	Using $P = I^2R$ (1) P = 0.45 [W] (1) 0.50 W – has to be greater than the power dissipated (need reason) (1)	1	1		3	1		
			Question 5 total	5	9	0	14	6	3	

Question	Marking details			Marks a			
2 (a)	Varies value of variable resistor	A01	AO2	AO3	Total 1	Maths	Prac 1
(b)							
(5)	Correct attempt e.g. $\ln R = \ln (kV^n)$ or $\ln R = \ln k + \ln V^n$ [or using						
	\log_e or using \log_{10} [1] Correct expression $\ln R = n \ln V + \ln k$ [or using \log_e or using						
	log ₁₀ [1]		2		2	2	2
(c)	V/V I/A R/Ω $\ln(V/V)$ $\ln(R/\Omega)$						
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	0.30 0.45 0.60 0.61						
	0.78 0.70						
	0.90 0.76 1.00 0.81						
	Accept 2 or 3 sig figs in all cases. Accept 4 sig. Figs for In I/ at 10.00 V (= 2.302) [1]		3		3	3	3
(d)	Axes labelled either with no units i.e. $\ln R$ (or $\log_{10}R$) on y -axis and $\ln V$ (or $\log_{10}V$) on x -axis, or with $\ln (R/\Omega)$ and $\ln (V/V)$ respectively (or equivalent using) [1] Suitable scale e.g. large block $-$ 0.2 on y -axis and 0.4 on x -axis for $\ln x$ values and 0.2 on x -axis and 0.1 on y -axis on both axes for $\log_{10} x$ values. [Linear, scales, with points occupying $\ge h$ alf available space] [1] All points plotted correctly within $\pm < m$ small square division [2] 5 points plotted correctly within $\pm < m$ small square division [1] 4 or less points plotted correctly within $\pm < m$ small square division [0] Straight line of best fit drawn [1] e.g. for $\ln x$ graph:	1	5		5	4	5
(e) (i)	Attempt at taking gradient [1] $n = \frac{(2.0 - 0.65)}{2.5} = 0.5[4] [1] [answer gains both marks]$ $\ln k = 0.65 \text{ or } k = e^{0.65} [1]$ $k = 1.9[2] [1] [answer gains both marks]$ N.B. ect from graph for both values. Mark scheme to be applied as above for candidates using \log_{10} values.	1	1		4	3	4
(ii)	$R = 1.9 \ V^{0.5}$ (ecf on n and k)	1			1	1	1
(f)	Required statement: Results lie close to line of best fit suggests good quality Accept: results fit with the expected theory Don't accept it's a straight line or reference to measuring instruments			1	1		1
	Question 2 total	3	12	2	17	13	17

. [0	otion		Marking details	Marks available					
	Question				Marking details	A01	AO2	AO3	Total	Maths	Prac
	2.	(a)			Gives charge [electrical potential] energy Accept pumps charge around circuit / does work on charge. Accept electrons instead of charge	1			1		
		(b)	(i)		Total emf = 3×1.60 or 4.80 [V] (1) Total resistance = $(1.20 + (3 \times 0.10))$ or 1.50 [Ω] (1) Current [= $\frac{V}{R}$] = 3.2 [A] (1) N.B. If workings in reverse award a maximum of 2 marks		3		3	1	
			(ii)	- 1	12.3 [W] ecf (10.8 W if 3 A used) e.g. using $P = I^2R = 3.2^2 \times 1.2 = 12.3$ [W]		1		1	1	
				II	15.4 [W] ecf (14.4 W if 3 A used) e.g. using P = IE = 3.2 × 4.8 = 15.4 [W]		1		1	1	
			(iii)		Thermal or internal. Accept 'heat', 'dissipated' (1) in internal resistance (1)	2			2		
		(c)			3.15 A or 3.2 A [Accept: even on short-circuit, extra cell gives only 3.0 A] (1) No. Current less than [accept same as] before ecf on (b)(i) (1)			2	2	1	
				·	Question 2 total	3	5	2	10	4	0

21. (a)		V- energy (per coulomb) used in [external] resistor / circuit. (1) E- energy (per coulomb) transferred / supplied by source / in the whole circuit (1) Ir- energy (per coulomb) wasted / lost in source / cell / internal resistance (1)	
		Use of 'per coulomb / unit charge' once. (1)	[4]
(b)	(i) (ii)	4[Ω] Gradient attempted e.g. 60/10 (1) (or use of equation ecf from (b) (i))	[1]
	. ,	emf = 6 [V] (1)	[2]
	(iii)	$1/I = 4[A^{-1}]$ or by implication (1)	
		$R = 20 [\Omega]$ (1) Use of I^2R i.e. $(0.25)^2 \times 20$ (ecf) (1) or correct substitution into both $V = IR$ and $P = IV$ or V^2/R	
		P = 1.25[W] (1)	[4]
(c)	(i) (ii)	emf = 12.0 [V] (ecf) and $r = 8.0$ [Ω] (ecf) $R = 52.0$ [Ω] (ecf)	[1] [1]
		y intercept $(r \rightarrow 8.0 \Omega \text{ (ecf)})$ (1)	[+]
		Precise gradient e.g. through (5,52) (ecf) (1)	[2]
	I	l l	

^{22.} (a)		Electrical energy (or work done) transferred [to other forms passing] between two points (1) per coulomb of charge (1) Definition of 1 V award 1 mark only	[2]
(b)	(i)	$V_{\text{supply}} = V_1 + V_2 + V_3$	[1]
	(ii)	Energy	[1]
(c)	(i)	$R_1+12 = \frac{9}{0.5}$ (1) Clear manipulation seen to show $R_1=6[\Omega]$ (1)	[2]
	(ii) (I)	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ to show effective parallel combination = 6Ω (1) this	
		can be implied V across upper 6Ω resistor shown = 4.5 [V] (ecf on parallel combination) (1)	[2]
	(II)	Total resistance = 12Ω (1) $I = \frac{9.0}{12} = 0.75 [A]$ (1) (accept $\frac{4.5}{6} = 0.75 [A]$)	[2]
	(III)	$1.2 = \frac{9}{(6 + R_{parallel})}$ $R_{parallel} = 1.5 [\Omega] (1)$	[4]
		$n \times (\frac{1}{12}) = \frac{1}{1.5}$ (1) ecf on 1.5[Ω]	
		n = 8 (1) Full marks for correct answer based on trial and error	
		Alternative solution:	
		$\frac{9}{1.2} = 7.5 \ [\Omega] \ (1)$ 7.5 - 6 = 1.5 [\Omega] \ (1)	
		$\frac{12}{n} = 1.5 \ [\Omega] \ (1)$	
		n = 8(1)	

3. (a)	(i)	Correct and convincing use of $\rho = \frac{RA}{l}$ (including unit conversion)	[1]
	(ii)	$\left(\frac{2000}{11.2}\right) = 179 \text{ A unit mark}$	[1]
	(iii)	$v = \frac{I}{nAe}$ rearranged (or shown numerically) (1) $n = 6.0 \times 10^{28} \times 3$ (1) $v = 1.55 \times 10^{-5} \text{ [m s}^{-1}\text{] (ecf on } I \text{ and } n\text{)}$ (1)	[3]
(b)	(i) (ii) (iii)	Same (or equivalent) v increased (1) because; A decreased, I,n,e unchanged by implication (1) Increased frequency / more collisions between electrons and lattice / atoms / ions or electrons carry greater kinetic energy (1) leading to increased vibrational / kinetic energy of lattice atoms (1)	[1] [2]

(1) lor (vt) [accept v if stated dist travelled in 1 s]

[NB free electrons not required to be labelled]

Number of free electrons = nAvt [or nAl] (1) Total change = nAvte [or nAle] (1)

$$I = \frac{nAvte}{t}$$
 with cancelling shown [or $\frac{nAle}{t}$, where $\frac{l}{t} = v$ shown] (1)

$$2.0 = 1.0 \times 10^{29} \times 1.7 \times 10^{-6} v \times 1.6 \times 10^{-19}$$
 (1) [substitution]
 $v = 7.4 \times 10^{-5} \text{ m s}^{-1}$ ((unit))(1)

collisions [accept obstructions](1)
between <u>free electrons and copper atoms / ions / lattice</u> (1) [accept: delocalised / moving / conducting electrons]

$$R = \frac{P}{I^2} \text{ [or } P = I^2 R \text{] (1); } R = \frac{0.1}{4} \text{ [=0.025 } \Omega \text{] (1)}$$

$$\rho = \frac{0.025 \text{[e.c.f.]} \times 1.7 \times 10^{-6}}{2.5} \text{ (1) [manipulation i.e. } \rho = \frac{RA}{l} \text{ or with}$$

figures]
$$\rho = 1.7 \times 10^{-8} \Omega \text{ m. (1)}$$

4

4

2

2

3

15

25. 2	(a)	Ammeter shown in series with bulb [or in series with bulb/voltmeter parallel combination] (1) Voltmeter shown in parallel with bulb [or across bulb/ammeter series combination] (1)	2
	(b)	 2.0 A 6.0 Ω	1 1
	(c)	Either: $\frac{1}{18} + \frac{1}{6(\text{ecf})} = \frac{1}{R_{\parallel}} (1); R_{\text{par}} = 4.5 \Omega (1)$ Substinto pot div equations: $12 = \frac{4.5}{4.5 + R} \times 16 (1)$ $R = 1.5 \Omega (1)$ Or: $I_{18 \Omega} = \frac{12}{18} [=0.67 \text{ A}] (1); \text{ So } I_{\text{total}} = 2.67 \text{ A } [\text{ecf from } (a)](1)$ $R = \frac{4(1)}{2.67(\text{ecf})} = 1.5 \Omega (1)$	4
	(d)	Graph shown with positive gradient and linear through the origin for low values (1) and smoothly reducing gradient for higher values [NB – not negative gradients at end](1)	2 [10]

26. (a)	(1)		Metal wire at constant temperature - straight diagonal line. Filament of lamp - curved line.	[1]
	(ii)		Straight line: R constant throughout [or V/I constant] as (1)T constant throughout (1) Curve: Initially R constant [or V/I constant] as(1) Then T increases (1) so R increases - accept explanation in terms of particles (1)	
				[5]
(b)	(1)		I=2[A]	[1]
	(ii)	(I)	Voltage across X = 12 [V]	[1]
		(II)	12 V - 6 V = 6 [V] ecf from (I)	[1]
		(III)	$R_2 = \frac{6}{4} = 1.5[\Omega] \text{ ecf from (II)}$	[1]
		(IV)	$I \operatorname{through} R_1 = 6 [A] (1)$	[3]
			$R_1 = \frac{3}{6} \text{ (ecf on } I \text{ and/or } V) = 0.5[\Omega] \text{ (1)}$	

(a)	(i)	Diagram to include Correct electric circuit with ohmmeter or power supply with ammeter + voltmeter with correct symbols and positioning (1) Method of heating shown (1)	
	(ii)	Method of recording temperature shown (1) Linear [or approximately linear] graph with positive gradient (1) and positive intercept on R axis (1).	3
(b)	(i) (ii)	Conducting / delocalised / free electrons (1) collide (1) with metal lattice / atoms / ions (1) [not with other free electrons] The greater the temperature the greater the vibrational energy of the lattice / metal ions (1) producing a greater chance [or rate] of	3
		collisions/ collisions more often / greater frequency of collisions (1) [not harder].	2

Que	stion			Marking details	Marks Available
3	(a)	(i)		[Free] electrons forced to move by applied pd (Need a reference to drift velocity or electron flow but does not need to be explicitly stated) (1) They collide with atoms/nuclei/ions/lattice of the wire (1) don't accept particles or molecules	2
		(ii)		Power = $\frac{1.8}{60}$ = 0.03 [W] (1) $R = \frac{0.03(\text{ecf})}{1.6^2} = 0.0117 [\Omega] (1)$	
				Alternative solution possible for the first 2 marks using $V = \frac{W}{Q}$ and $R = \frac{V}{I}$	
				$\rho = \frac{0.0117 \times 2 \times 10^{-6}}{0.4} $ (1) [ecf on R] = 5.9 × 10 ⁻⁸ [\Omega m] (1)	4
	(b)	(i)		l or (vt) [accept v if stated dist travelled in 1 s] A [NB free electrons not required to be labelled]	
				Number of free electrons = $nAvt$ [or nAl] (1) Total change = $nAvte$ [or $nAle$] (1) $I = \frac{nAvte}{t}$ with cancelling shown [or $\frac{nAle}{t}$, where $\frac{1}{t} = v$ shown] (1)	
				Volume defined either from diagram [e.g. A and l labelled as shown] or in body of derivation [e.g. $vol = Al$] and n identified correctly—for the first mark	4
		(ii)		$1.6 = 6.4 \times 10^{28} \times 2 \times 10^{-6} \times v \times 1.6 \times 10^{-19}$ (1: substitution) $v = 7.8 \times 10^{-5}$ [m s ⁻¹] (1)	2
		(iii)	(I) (II) (III)	less than 1.6 A identified/circled (1) the same as identified/circled (1) half identified/circled (1)	3
				Question 3 Total	[15]

29. (a)		n - number of free/conducting electrons (charge carriers) per unit volume (1) accept free electron density ν - drift velocity (1)	[2]
(6)		LHS: Cs ⁻¹ (l) RHS: m ⁻³ x m ² x ms ⁻¹ x C (l) Clear manipulation to show/state LHS = RHS (l)	[3]
(c)	(1)	$v = \frac{I}{nAe}$ (1) (or correct substitution) $v = 1.30 \times 10^{-4} \text{ ms}^{-1}$ (1) (-1 for slips in powers of 10)	
		$t = \frac{5.0}{1.30 \text{ x} 10^{-4}} = 3.85 \text{ x} 10^4 \text{ [s]}$ (1) ecf for incorrect value of v	[3]
	(ii)	Reduced CSA (or diameter) and n, e constant (1) Increased v (1) Hence reduced t (1)	[3]
^{30.} (a)	(i)	Ruler and wire shown and labelled (1) Moving pointer or jockey or crocodile clip indicated (1) Either: Correctly positioned ohmmeter with no power supply; or correctly positioned voltmeter and ammeter with power supply (1) [No labelling required for either method].	[3]
	(ii)	Diagonal line through origin	[1]
	(iii)	CSA from <u>diameter of wire</u> (1) Gradient from graph = (R/l) or (ρ/A) Or stated take a pair of R and l values from the graph (1) ρ = gradient × CSA or use of ρ = RA/l (1)	[3]
<i>(b)</i>	(i)	$R = \frac{144}{32} = 4.5 [\Omega] (1)$ Correct substitution into $R = \rho l/A$ (1) $l = 0.375 [m] (1) \text{ (ecf on } R)$	[3]
	(ii)	I = 2.7 [A] (from V/R or P/V etc) (1) (ecf on I) Correct substitution into $I = nAve$ (1) $v = 1.24 \times 10^{-2}$ [m s ⁻¹] (1) accept 0.01 m s ⁻¹	[3]
		Question 5 Total	[13]

^{31.} (a)	(i)	Ruler and wire shown and labelled (1) Moving pointer or jockey or crocodile clip indicated (1) Either: Correctly positioned ohmmeter with no power supply; or correctly positioned voltmeter and ammeter with power supply (1) [No labelling required for either method].	[3]
	(ii)	Diagonal line through origin	[1]
	(iii)	CSA from diameter of wire (1) Gradient from graph = (R/l) or (ρ/A) Or stated take a pair of R and l values from the graph (1) ρ = gradient × CSA or use of ρ = RA/l (1)	[3]
<i>(b)</i>	(i)	$R = \frac{144}{32} = 4.5 [\Omega] (1)$ Correct substitution into $R = \rho l/A$ (1) $l = 0.375 [m] (1) \text{ (ecf on } R)$	[3]
	(ii)	I = 2.7 [A] (from V/R or P/V etc) (1) (ecf on I) Correct substitution into $I = nAve$ (1) $v = 1.24 \times 10^{-2}$ [m s ⁻¹] (1) accept 0.01 m s ⁻¹	[3]