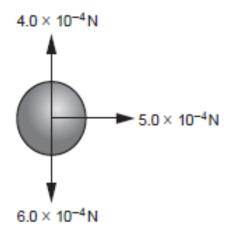
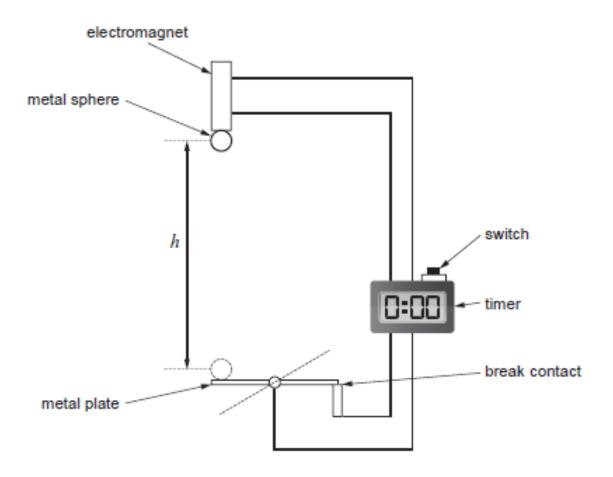

Matthew is sliding down a snow-covered slope on a sledge. The total mass of Matthew and the sledge is 62 kg.



- (a) On the diagram the arrow represents the total weight, W, of Matthew and the sledge. Add two more arrows to show the normal contact force on the sledge and the frictional force on the sledge.
 [1]
- (ii) Show that the component of W parallel to the slope is approximately 200 N. [2]

 (iii) Calculate the magnitude of the normal contact force. [2]
- (c) The sledge's acceleration just after it has started moving is measured to be 2.5 ms⁻². Matthew believes that, starting from rest, it will take him less than 9.0s to slide 100 m down the slope. Evaluate whether or not he is correct, commenting on whether or not your calculation is conclusive.
 [3]


2

 (a) The forces acting on a hailstone falling in a horizontal cross-wind can be represented as in the diagram.

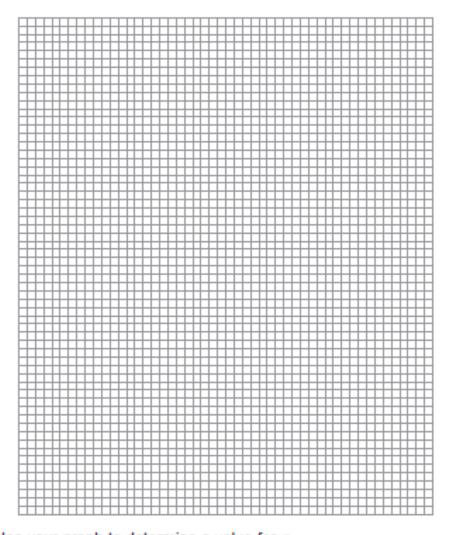
(i)	Calculate hailstone.						[3]
/:::\		 41	 	 	 	 	
(ii)	At a later velocity. Ir						inai [1]

(b) Aled uses the following apparatus to measure the acceleration of free-fall, g.

When the switch is pressed, it starts the timer and disconnects the electromagnet, almost instantly releasing the metal sphere. When the sphere hits the metal plate it breaks the circuit, stopping the timer. The time taken for the metal sphere to fall through a range of different heights, h is measured.

(i)	Aled is told that there is a very small time delay between the switch and the ball being released. This is a systematic error. The manuthat the time delay is 0.05s. State how Aled should account for the swhen taking readings.	ıfacturer states

(ii) Aled records his corrected results (i.e. with the systematic error accounted for) in the table below. Complete the row for time squared, t² giving your answers to an appropriate number of significant figures. [2]

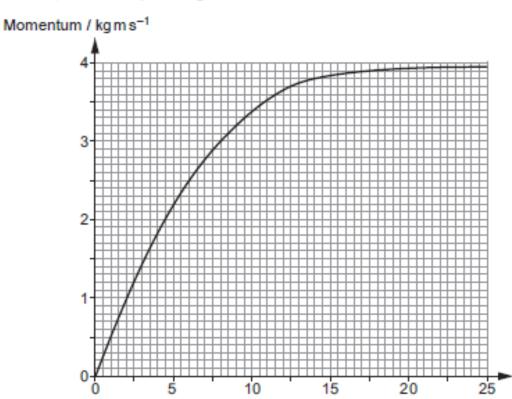

Drop height, h/m	0.40	0.80	1.20	1.60	2.00
Corrected time, t/s	0.27	0.41	0.48	0.58	0.64
Corrected time squared, t ² /s ²					

(iii)	The	following	relationship	is	used	to	find	а	value	for	g:

$$g = \frac{2h}{t^2}$$

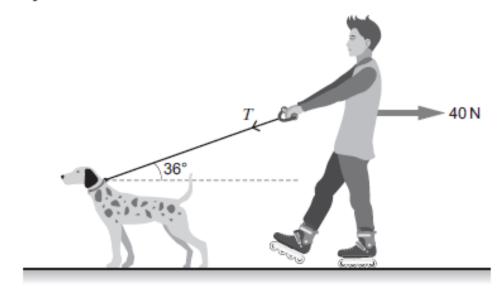
motion. Show how this relationship is obtained from an appropriate equation of accelerated	

 (iv) On the grid below, plot a graph of h (vertical axis) against t² (horizontal axis) and draw a line of best fit.

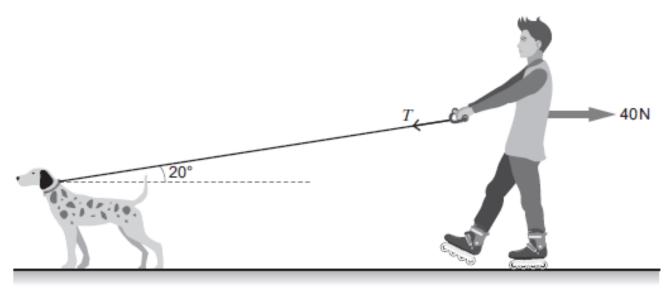


	(v) Use your graph to determine a value for g.	[3]
(c)	Discuss to what extent your graph agrees with the equation in (b)(iii).	[3]

3.


(a) State Newton's second law of motion in terms of momentum.
[2]

(b) A momentum-time graph is plotted below for an object of mass 0.050 kg dropped (at time t = 0) from the top of a high cliff.


	0.15 N.	[3]
	Deduce the magnitude of the force of air resistance on the object at $t = 10 \text{s}$.	
(iii)	State the magnitude of the force of air resistance on the body when it has read its terminal velocity.	

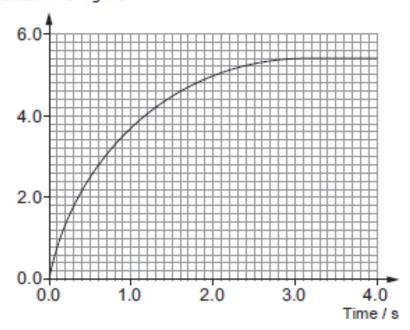
4. (a) The diagram shows a roller-skater being pulled along a horizontal road at constant velocity. The total resistive force to the skater's motion is 40 N.

Show that the tension, T, in the dog lead is approximately 50 N.	[2]

(b) Later, the roller-skater, moving at the same velocity as in part (a), extends the dog lead as shown in the diagram below.

(i))	Ass				ioi	n, i	Τ,	is	the	es	an	ne i	as	in	pai	rt (a),	ex	pla	in	wh	ıy t	he	roll	er-s	ska	ter [1]
			 	 	 	 									• • • •													

	(ii)	Calculate this	s initial accele	ration, given th	at the mass of th	ne roller-skater	is 35 kg. [3]
(c)	lengt	roller-skater be h of the dog le is correct.	elieves that the ead. Use infor	e dog's rate of omation from (a)	doing work is the and (b) to inves	e same, regard tigate whether	less of the or not this [3]
(c)	lengt	h of the dog le	elieves that the ead. Use infor	e dog's rate of omation from (a)	doing work is the and (b) to inves	e same, regard tigate whether	or not this
(c)	lengt	h of the dog le	elieves that the	e dog's rate of omation from (a)	doing work is the and (b) to inves	e same, regard tigate whether	or not this
(c)	lengt	h of the dog le	elieves that the	e dog's rate of omation from (a)	doing work is the and (b) to inves	e same, regard tigate whether	or not this
(c)	lengt	h of the dog le	elieves that the	e dog's rate of omation from (a)	doing work is the	e same, regard tigate whether	or not this
(c)	lengt	h of the dog le	elieves that the	e dog's rate of omation from (a)	doing work is the	e same, regard tigate whether	or not this


5. (a) A law of motion can be expressed as:

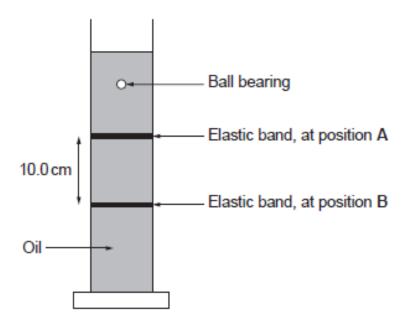
State the name of the law.

[1]

(b) The graph shows how the momentum of a spacecraft varies with time.

Momentum / 103 kg m s⁻¹

(i)	By drawing a suitable tangent, show that the resultant force on the spacecraft a	at
	$t = 1.0 \mathrm{s}$ is approximately 2 kN.	[2]


(ii) Hence show that the mass of the spacecraft is approximately $5000 \,\mathrm{kg}$, given that its acceleration at $t = 1.0 \,\mathrm{s}$ is $0.4 \,\mathrm{m}\,\mathrm{s}^{-2}$.

(iii) Label, with the letter P, a point on the graph where the resultant force on the spacecraft is zero.
[1]

(c)	At $t = 4.0$ s the spacecraft 'docks' (collides) with another stationary spacecraft of mass 7000 kg. They join on impact.		
	(i)	State the principle of conservation of momentum.	2]
	(ii)	Calculate the velocity of both spacecraft after colliding.	3]

6.

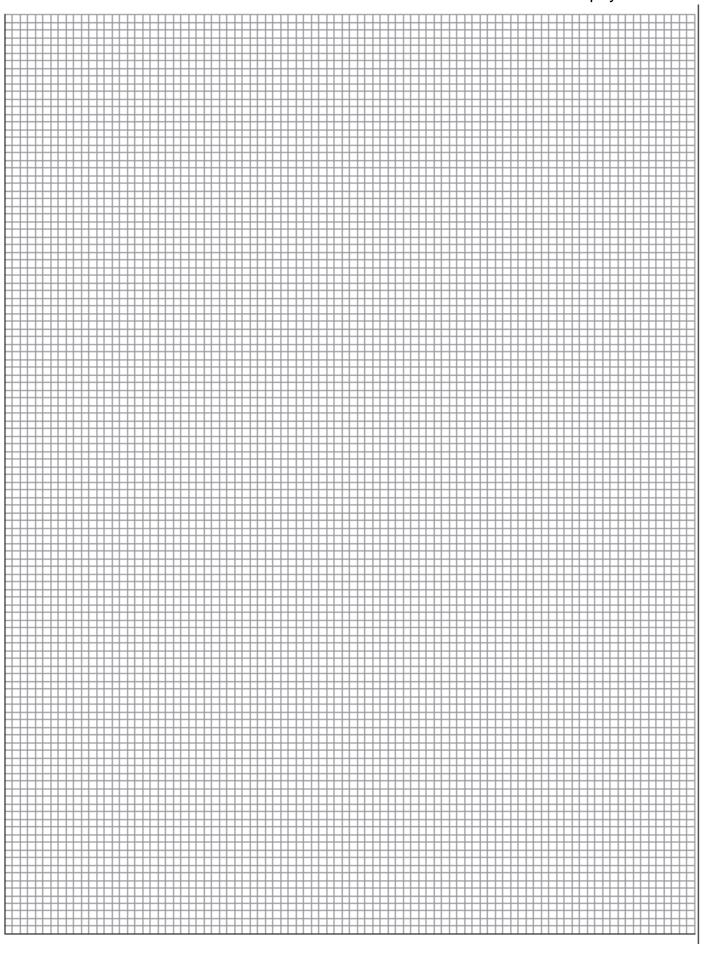
Emma investigates the viscosity of oil by measuring the terminal velocities of a number of different sized ball bearings as they move through it. She uses the following apparatus.

(a)	(1)	band at position A. Explain what is meant by terminal velocity. [1]
	(11)	At terminal velocity the two main forces acting on the ball bearing are its weight and the drag of the oil. According to Newton's third law, for each of these forces there is a corresponding equal and opposite force. Identify each of these forces and the body upon which it acts. [2]

(b) Emma measures the time it takes the ball bearings to fall from the elastic band at position A to the elastic band at position B. She carries out each measurement twice, and obtains the following results. The distance between the two elastic bands is 10.0 cm. The uncertainty in this distance can be considered negligible when calculating the uncertainty in the terminal velocity.

Ball b	earing	Time to fall			Terminal velocity	
Diameter, d/cm	(Diameter) ² , d ² /cm ²	Reading 1 /s	Reading 2 /s	Mean/s	Velocity, v/cms ⁻¹	Uncertainty, $\Delta v/{\rm cm s}^{-1}$
0.24	0.058	14.0	14.6	14.3		± 0.01
0.32	0.10	8.0	8.6	8.3		± 0.05
0.40	0.16	5.3	5.9		1.8	±
0.48	0.23	3.6	4.1		2.6	±
0.64	0.41	2.2	1.9	2.1	4.8	± 0.3

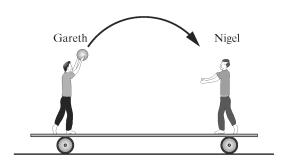
Complete the table. Space has been left for any calculations if needed.


(c) (i) Emma's friend, Fiona, thinks that the terminal velocity, v, is directly proportional to the square of the diameter, d, of the ball bearing,

$$v \propto d^2$$
.

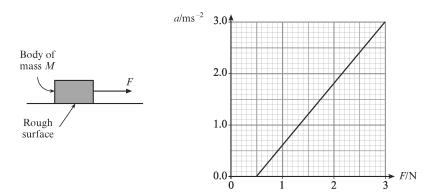
Plot a suitable graph to check whether Fiona is correct.

[4]

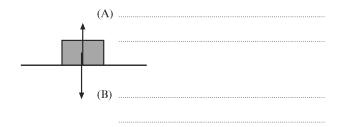

[4]

(ii)	Evaluate whether or not Fiona is correct. [2	2]

7.


Two boys stand each end of a trolley as shown. The trolley is initially at rest and can move without resistance on a horizontal surface.

(a) (b)	(i) Define acceleration.			
	(ii)	Gareth takes 0.80s to throw a ball from rest to a speed of 6.0ms ⁻¹ . Calculate acceleration of the ball.	[2]	
	Desc	cribe and explain in terms of forces, the motion of the trolley from the instant is released by Gareth until after it is caught by Nigel.		


8.

A body of mass M is placed on a rough surface and a horizontal force, F, is applied to it as shown. Data-logging apparatus is used to determine the acceleration of the body for different values of F. The results are shown in the graph.

(a)		Explain why the acceleration of the body is 0 when the applied force F is less the $0.5\mathrm{N}$.	[1
	(ii)	Use your graph to determine the value of M .	[3

(b) (i) Label forces (A) and (B) also acting on the body. [2]

(ii)	State the Newton third law reaction to force (B) and the body upon which it acts. [2]