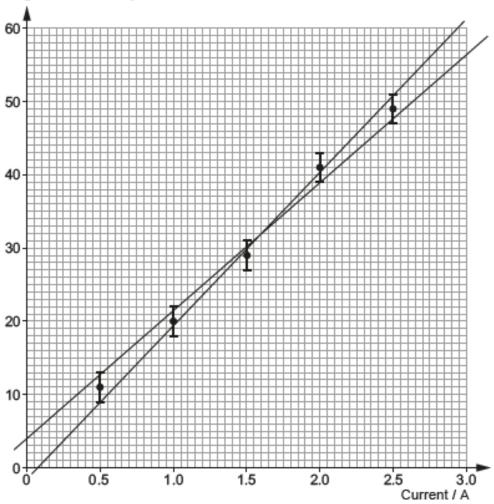

l. (a)	The current in a long wire is 290 A and is too great to be measured by an ammeter. Explain how you could use a Hall probe, calibrated in tesla (T), to determine this current. [3]
	→
	Current, I
	Hall probe
	rial propo
•••••	
(b)	Another long wire carrying the same large current is placed parallel to the original wire as shown. Calculate the force per unit length on each wire also stating the direction of the force on each wire. [4]
	290 A
	5.0 cm
	290 A
	230 A

(d)	Suppose that an electron travels in a region with a magnetic field and an electric field due to two parallel metal plates as shown below. Deduce whether or not the electron continues with constant velocity ($B = 4.64 \mathrm{mT}$). [5]
	+ 13.5kV 290 A
Metal plat	
\	290 A 0V

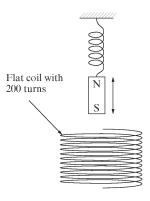
 An experiment is carried out to measure the magnetic field in a long solenoid as the current in the solenoid is varied.


Theory states that the relationship between magnetic flux density, B, at the centre of the solenoid and current, I, is given by the equation:

$$B = \mu_0 nI$$

The results obtained are shown in the table and plotted on the grid opposite along with error bars and lines of maximum and minimum gradient.

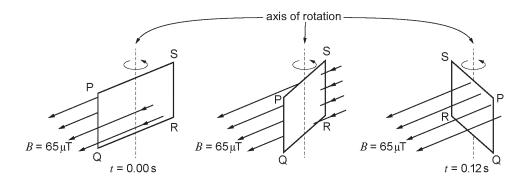
Current / A ±0.01 A	Magnetic flux density / mT ±2mT
0.50	11
1.00	20
1.50	29
2.00	41
2.50	49



		rcentage uncertainty.	[4]

(D)		entage uncertainty in the length of the solenoid is 0.4%.
(c)	(i)	The solenoid manufacturer states that there are exactly 5 000 turns in the solene Evaluate the accuracy of your value obtained in part (b) and whether or not graph is in agreement with the equation: $B = \mu_0 nI$.
	(ii)	Suggest a reason for the disagreement between the manufacturer's stated va (5000 turns) and your value calculated in part (b). Suggest how the experime technique might be improved for better agreement.
estion	take	n from WJEC examination paper 242801, June 2018
mag	gel la	arge left///
m a a	ا دی	large left ///
HIIG	JU∠ I	large left///

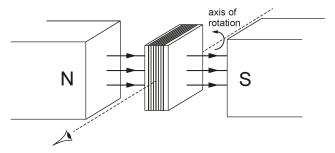
Question taken from WJEC examination paper 132501, June 2012


#3

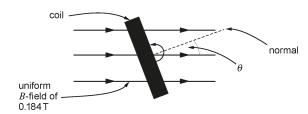
(a) 	Exp	lain briefly why an alternating emf is induced in the coil.]
(b)	(i)	The induced emf varies in magnitude sinusoidally with a peak value of ± 0.707 V Calculate the rms value of the induced emf.	
	(ii)	State the value of the rate of change of flux through each turn of the coil whe the peak value of 0.707 V is obtained and explain how you obtained your answer.	٠.
(c)	One o Expla	end of the coil is connected with the other so that there is an induced curren ain why the magnet's motion is now damped.	

Question taken from WJEC examination paper 132501, June 2011

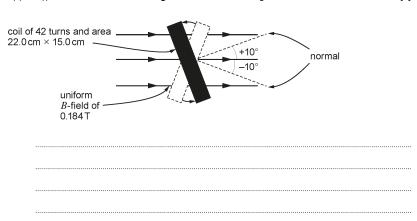
A large square loop has sides of length 0.815 m and is rotated through 90° in a uniform magnetic field of 65 μ T. The diagrams show the same square loop at different times.


(a)	Determine the magnetic flux through the square loop:	[3]
	(i) when $t = 0.00 \mathrm{s}$ (sides QR and SP are parallel to the <i>B</i> -field);	
	(ii) and when $t = 0.12$ s (PQ, QR, RS and SP are perpendicular to the B -	
(b)	The square loop is made of copper. Explain why there is a current in the otated.	e loop as it is [2]

(c)	Explain how Lenz's law will give the direction of the forces acting on the sides PQ and RS as the square loop is rotated. [2]
(d)	The copper wire from which the square loop is made has a circular cross-section of diameter 6.0 mm. The resistivity of copper is $1.67 \times 10^{-8} \Omega$ m. Calculate the mean current flowing through the square loop as it is rotated between $t = 0.00$ s and $t = 0.12$ s. [5]
	copper wire in the shape of a square loop 0.815 m 6.0 mm


Question taken from WJEC examination paper 132501, June 2015

 				v and Lenz's law).	[3
 A thick condu as shown belo	ecting bar is move w. The rails have	ed with constar e negligible resi	nt speed over nor	n-parallel conducting -field is uniform.	rai
\odot	·	•	•	•	
†		v = 31	m s ⁻¹	2.9 m	
•1.8 m	43Ω ⊙	\odot	•	•	
\odot	\odot	•	•	· · ·	
	•	20.1 m	B = 4	45.5 μT out of the pape →	er
 The conduct why the indu	tor moves at a c uced emf increa	onstant speed ises.	of 31 m s ⁻¹ . Use	Faraday's law to ex	pla [
 The conduc	tor starts movi	ng from the e	nd near the 43	Faraday's law to exp Ω resistor. Calculate s travelled the full 20	e ti
 The conduction mean current length of the	tor starts movi	ng from the e	nd near the 43	Ω resistor. Calculate	e t 0.1
 The conduction mean current length of the	tor starts movint in the resistor	ng from the e	nd near the 43	Ω resistor. Calculate	e t 0.1
 The conduction mean current length of the	tor starts movint in the resistor	ng from the e when the con	nd near the 43	Ω resistor. Calculate	e t 0.1

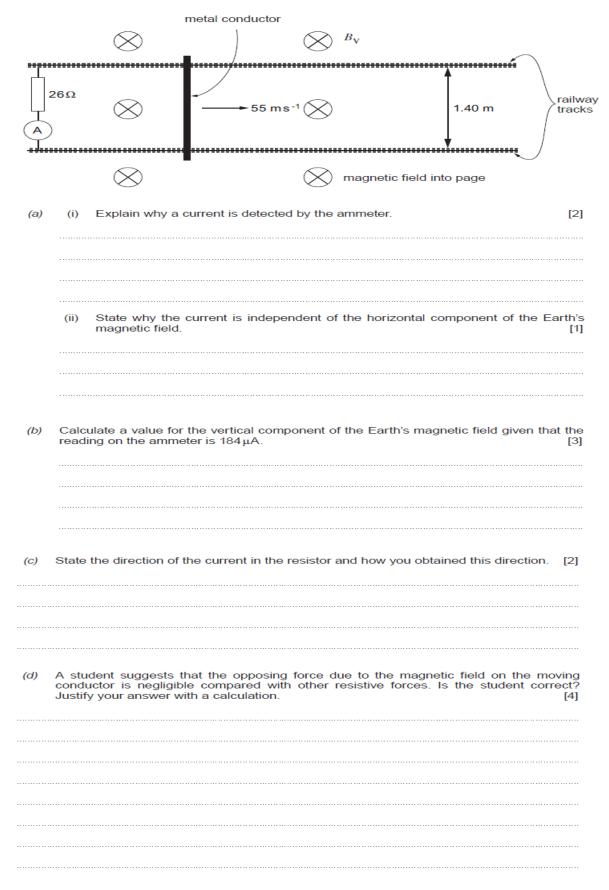

A rectangular coil rotates at a constant angular velocity within a uniform magnetic field. The coil has 42 turns and area 22.0 cm \times 15.0 cm. The diagram below is a simplified 3D diagram of the coil when the magnetic field is perpendicular to the coil.

The second diagram is a 2D representation of the coil looking along the axis of rotation.

(a) (i) Calculate the flux **linkage** of the coil for the angles $\theta = -10^{\circ}$ and $\theta = +10^{\circ}$. [2]

	(ii) 	Explain θ = +10°	why the n	nean ind	duced ei	mf is z	ero as	the coil	moves	s betwee	en θ = -10° and [1]	
(b)		ulate the operiod of r					hen the	e angle	heta char	nges fro	m 80° to 100° i [4]	
				Side	view	<u> </u>			<u></u>	ormal		
		turns and 15.0 cm	area	_		110	00° /8	0°	_			
			uniform <i>B</i> -field of 0.184 T					~~				
(c)	fred 5 V	quency of	12.5Hz ; on (vertic	and pro ally) and	ducing a d 20 ms	an rm per di	s pd o [.] vision (f 12.0 V (horizor	/. The ntally).	oscillos Sketch	coil rotating at cope settings a a trace that mig	are

 An experiment is carried out in a very strong uniform magnetic field in order to confirm Faraday's Law under extreme conditions. A coat hanger made of aluminium wire is bent from Shape 1 to Shape 2 in a time of 16 ms.



(1)	Show that a mean emf of 6.4 V is induced in the coat hanger.	[2]
(ii)	Show on the diagram of Shape 2 the direction of the induced current and briefly how you determined this direction.	state very
wire	through which the current flows is 91 cm. Show that the mean current in t	
	(ii)	(ii) Show on the diagram of Shape 2 the direction of the induced current and

(c)	16 ms in the magnetic field will increase its temperature by less than 1 °C. Determine, using appropriate calculations, whether or not lestyn is correct. (Density of aluminium = 2 700 kg m ⁻³ , specific heat capacity of aluminium = 897 J kg ⁻¹ K ⁻¹ .) [5]
(d)	For medical research, it is decided to investigate the effect of this strong magnetic field (2.1 T) on patients with metal replacement joints to see if the metal joints become hot or undergo large forces (during MRI scans). Discuss the ethics of such an experiment. [3]

Question taken from WJEC examination paper 242801, June 2018

A metal conductor is placed across horizontal railway tracks and moved quickly in the direction shown. This set up is designed to measure the vertical component $(B_{\rm V})$ of the Earth's magnetic field.

5.	(a)	State the laws of Faraday and Lenz for electromagnetic induction.	[2]
	(b)	Two strong bar magnets are dropped through two copper pipes (P and Q). Pipe P is slit running along its length but Q is complete. When the magnet is dropped through P it accelerates almost uniformly but the magnet dropped through pipe Q quickly rea a very low terminal velocity. Explain these observations.	has a pipe aches QER]
	Side	view Top view	
		magnets inside Pipe P)
		pipes magnets	
	F	Pipe P slit Pipe Q slit pipes	

(c)	By applying the principle of conservation of energy, calculate the temperature increase pipe Q after the magnet has fallen at constant speed.
	Data: • mass of magnet = $0.300\mathrm{kg}$, • cross-sectional area of the copper walls of pipe Q = $7.85\times10^{-6}\mathrm{m}^2$ (see diagram) • density of copper = $8960\mathrm{kg}\mathrm{m}^{-3}$ • specific heat capacity of copper = $385\mathrm{J}\mathrm{K}^{-1}\mathrm{kg}^{-1}$.
	Shaded area = 7.85 × 10 ⁻⁶ m ²
	h = 0.80 m