	insulating flask contains 0.6×10^{-3} m ³ of water at 19.5 °C. A volume 1.6×10^{-3} m ling water at 100.0 °C is poured into the flask.	ı ³ O
(sp	ecific heat capacity of water, c = 4 200 J kg ⁻¹ °C ⁻¹ ; density of water, ρ = 1 000 kg n	n ⁻³)
(i)	Determine the final temperature of the water in the flask.	[3]
(II)	Calculate the heat lost by the boiling water.	[3]
(iiii)	Justify the statement that no work is done on/by the boiling water as it cools.	Ne
4,7	further calculations are needed.	[1

[1]

(a) Give the definition of the specific heat capacity of a material.

3.

Side vie	ew P	magnets are ong its length bes almost uniforminal velocity. magnets inside pipes	e dropped the but Q is conformly but the Explain the	hrough two mplete. Wh e magnet d ese observ	rations.	p view). Pipe P has and through pip quickly reache [6 QER
Pip	e P	inside		Pipe P			Pipe Q
				Pipe Q	į ir	agnets nside pipes	

#2

(c)	By applying the principle of consequation of appray, calculate the temperature increases of
(c)	By applying the principle of conservation of energy, calculate the temperature increase of pipe Q after the magnet has fallen at constant speed.
	Data: • mass of magnet = $0.300\mathrm{kg}$, • cross-sectional area of the copper walls of pipe Q = $7.85\times10^{-6}\mathrm{m}^2$ (see diagram) • density of copper = $8960\mathrm{kg}\mathrm{m}^{-3}$ • specific heat capacity of copper = $385\mathrm{J}\mathrm{K}^{-1}\mathrm{kg}^{-1}$.
	Shaded area = 7.85 × 10 ⁻⁶ m ² —
	Pipe Q
	h = 0.80 m

#7

2.	Kinetic theory f	for an ideal	gas gives an	expression th	at can be written as:
----	------------------	--------------	--------------	---------------	-----------------------

$$pV = \frac{1}{3} \ nN_A mc^{\overline{2}}$$

(a)	State the meaning of the terms.	L ²
	(i) m	
	(ii) $\overline{c^2}$	
(b)	Defining both symbols, explain what quantity is given by $nN_{\!A}$.	[3
•••••••		
(c)		pV = nRT
(c)	The product of pressure and volume for an ideal gas may also be expressed as a Show in clear steps that the total translational kinetic energy of one mole of the $\frac{3}{2}$ RT.	pV = nRT gas is [4
(c)	Show in clear steps that the total translational kinetic energy of one mole of the	gas is
(c)	Show in clear steps that the total translational kinetic energy of one mole of the	gas is
(c)	Show in clear steps that the total translational kinetic energy of one mole of the	gas is
	Show in clear steps that the total translational kinetic energy of one mole of the	gas is
	Show in clear steps that the total translational kinetic energy of one mole of the $\frac{3}{2}$ RT.	gas is
	Show in clear steps that the total translational kinetic energy of one mole of the $\frac{3}{2}$ RT.	gas is

(d)	An ideal monatomic gas, initially at a pressure of $115kPa$ and temperature of $29kPa$ expands at constant pressure from a volume of $2.20\times10^{-3}m^3$ to $2.60\times10^{-3}m^3$. Calcuthe change in the internal energy of the gas.	4K, late [3]

Question taken from WJEC examination paper 242701, June 2018

	phys	sical processes that cause an increase in the temperature and pressure of	the gas. [6 QER]
/b)	Λ	entainer of fixed values contains our gap at a temperature of 2021/	
(b)	(i)	ontainer of fixed volume contains oxygen gas at a temperature of 293 K. Five oxygen molecules have speeds 400, 425, 450, 550 and 625 m s ⁻¹ . De	etermine
	(-)	their rms speed.	[2]
	(ii)	Using an appropriate calculation, determine whether or not the rms speed ca	alculated

in part (b)(i) is consistent with the expected rms speed of the molecules of the gas at this temperature. (Polative molecular mass of oxygen gas = 32.)

(iii)	If the gas in the con of its initial value, de	tainer is heated and etermine the rms sp	d the pressure of the eed of the molecule	e gas increases by 20% s of the gas. [2]
(iii)	If the gas in the con of its initial value, de	tainer is heated and etermine the rms sp	d the pressure of the eed of the molecule	e gas increases by 20% s of the gas. [2]
(iii)	If the gas in the con of its initial value, de	tainer is heated and etermine the rms sp	d the pressure of the eed of the molecule	e gas increases by 20% s of the gas. [2]

at this temperature. (Neighbor molecular mass of oxygen gas = 52.)

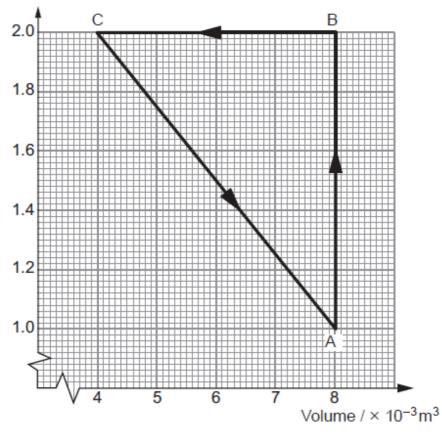
Question taken from WJEC examination paper 242701, June 2017

(a) The first law of thermodynamics is given by:

$$\Delta U = Q - W$$

State what is represented by:

 ΔU


[3]

0

W

(b) A fixed mass of gas is taken around the closed cycle $A \rightarrow B \rightarrow C \rightarrow A$.

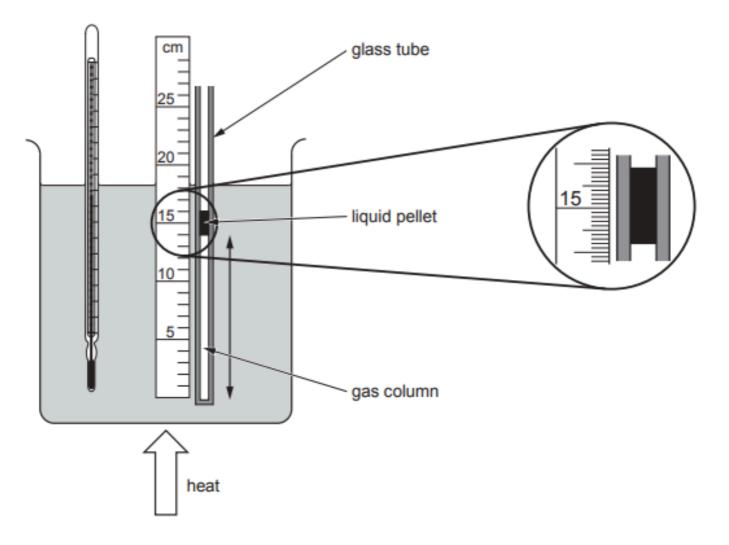
Pressure / \times 10 5 N m $^{-2}$

(i) Complete the table by describing each process in terms of pressure and volume. The description for process A → B is already inserted. For each process state if any work is done, and if so indicate if it is done on or by the gas. No calculations are required. [5]

Process	Description of process	Work done on / by gas (if any)
$A \rightarrow B$	Increase in pressure at constant volume	
$B \rightarrow C$		
$C \rightarrow A$		

1.8 1.6 1.4 1.2 1.0	
1.6 1.4 1.2	
1.4	
1.2	
1.0 A	
4 5 6 7 8	
Volume $/ \times 10^{-3} \text{m}^3$ (i) Show that the temperature is constant along the new path from C to A.	Α.

Question taken from WJEC	C examination paper 242701, June 20	017		

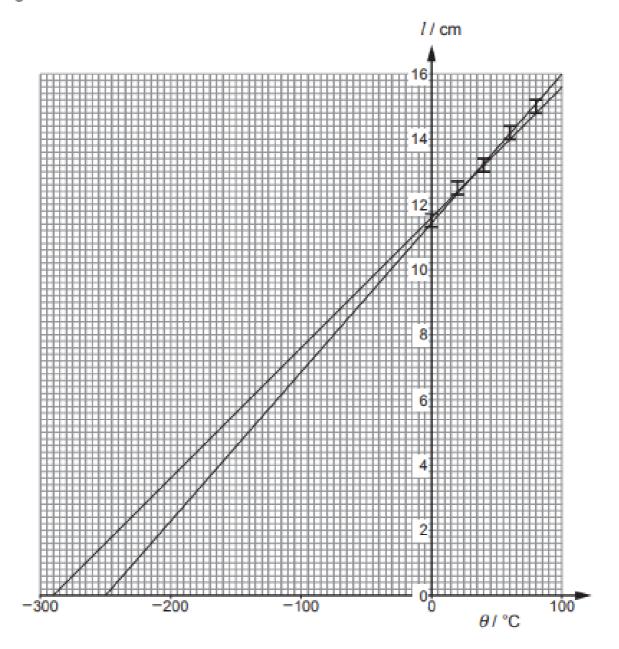

5.	an ini	itial vo	container with a leakproof piston of cross-sectional area 0.040m^2 at one end olume of $8.5\times10^{-3}\text{m}^3$. It contains oxygen gas at a pressure of $5.0\times10^5\text{Pa}$ are of 285K .	has id a
	(Rela	tive m	nolecular mass of oxygen = 32)	
			Volume = 8.5 × 10 ⁻³ m ³ Cross-sectional area = 0.040 m ²	
	(a)	Calc	culate:	
		(i)	the number of moles of oxygen gas in the container;	[2]
		•••••		
				-
		(ii)	the number of molecules in the container;	[1]
		(iii)	the rms speed of the molecules;	[3]
				<u>-</u>

	(iv)	the force exerted by the gas on the piston.	[1]
(b)	The 10.2	gas is allowed to expand at a constant temperature of 285 K to a volume of \times 10 ⁻³ m ³ .	
	(i)	Calculate the final pressure of the gas.	[2]
	(ii)	During the process the gas does 773J of work. Determine the heat flowing into gas, explaining your reasoning.	o the [2]
	m.1.1.1.1		

(iii)	Following the expansion the gas is returned to its initial state by a two-stage process
	- a decrease in volume at constant pressure;
	- an increase in pressure at constant volume.
	A student says that approximately $60\mathrm{J}$ of heat flows into the gas during the overall cycle (the expansion and return of the gas to its original state). Justify this. Include a sketch of the paths on a $p{-}V$ diagram with values on both axes. [4]
	p 1
	V

ŧ7

A student performs an experiment to estimate the Celsius temperature of absolute zero.


The length, l, of the gas column and its temperature, θ , are measured at atmospheric pressure, 1.01×10^5 Pa. The temperature of the water is initially $0.0\,^{\circ}$ C. It is then increased to $80.0\,^{\circ}$ C. Readings are taken at $20.0\,^{\circ}$ C intervals. The scale used to measure the length gives an uncertainty of \pm 0.1 cm at the top of the column and an uncertainty of \pm 0.1 cm at the bottom.

Values of θ and l are recorded in the table below.

θ/°C	1 / cm	
0.0	11.5	
20.0	12.5	
40.0	13.2	
60.0	14.2	
80.0	15.0	

(a)	Justify the number of significant figures used to record the length, I.	[2]
		<u>.</u>
(b)	The glass tube in which the gas is trapped has an internal diameter of (1.5 \pm 0.1) mm.	
	(i) Calculate the volume of the gas at 0.0 °C.	[2]

	(ii) Show that the percentage uncertainty in this volume, \it{V} , is approximately 15%.	[3]
	•	

(c) The length, I, is plotted against the temperature, θ. Lines of maximum and minimum gradient consistent with the error bars have been drawn.

Use the graph to estimate absolute uncertainty.	the temperature of	of absolute zero	o in °C, togeth	er with its [2]

	(ii) Justify the statement that the results are consistent with the ideal gas equation.
(d)	State what happens to the behaviour of the gas molecules as the temperature approac absolute zero.
(e)	The scale resolution of the ruler affects the final uncertainty in the value of absolute zo Identify two other factors that could affect the accuracy.

2.	(a)	The escape velocity, v , of a mass, m , from a spherical mass, M , and radius, R , can be calculated using:				
			$\frac{1}{2}mv^2 - \frac{GMm}{R} = 0$			
		(i)	Explain how this equation is an application of conservation of energy.	[3]		
		(ii) 	Calculate the escape velocity from the Sun ($M_{\rm Sun}$ = 1.99 $ imes$ 10 30 kg, $R_{\rm Sun}$ = 6.96 $ imes$ 10 8 m).	[3]		
	(b)	(i)	The temperature of the surface of the Sun is 5780 K. Use a kinetic theory equation show that the rms speed of a free electron on the surface of the Sun is approximate 500 km s ⁻¹ .			

(ii)	By considering your answers to (a)(ii) and (b)(i), explain why the Sun has a slight positive charge. [2]
(iii)	A student claims that a positive charge of approximately 0.08 C on the Sun is enough to produce an electrostatic force equal to the gravitational force on an escaping electron. Determine whether or not she is correct.
(iv)	Estimate the percentage of lost electrons compared with the total number of electrons on the Sun. Assume that the Sun is mainly hydrogen and that it has lost 0.08 C of charge in the form of electrons.