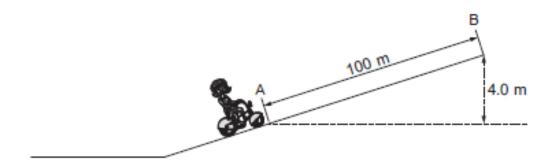
(a) By referring to the diagrams, discuss some of the energy changes involved in a bungee jump. You should make reference to gravitational potential energy, kinetic energy and elastic potential energy in your answer. [5]

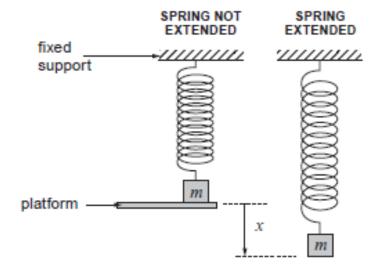

A	В	С	D	
At the start	Free fall, cord slack	Cord stretching	At the lowest point	

lengt	th $80\mathrm{m}$. When he reaches the lowest point for the first time the length of the cord n. Calculate	ral Lis
(i)	the loss of gravitational potential energy from his position on the bridge to t lowest point for the first time,	[2]
(ii)	the stiffness constant (k) of the bungee cord assuming the cord obeys Hooke's la	aw
	and that there are no losses due to air resistance,	[3]
(iii)	the extension of the cord when he finally comes to rest (after having 'bounced'	
		[2]

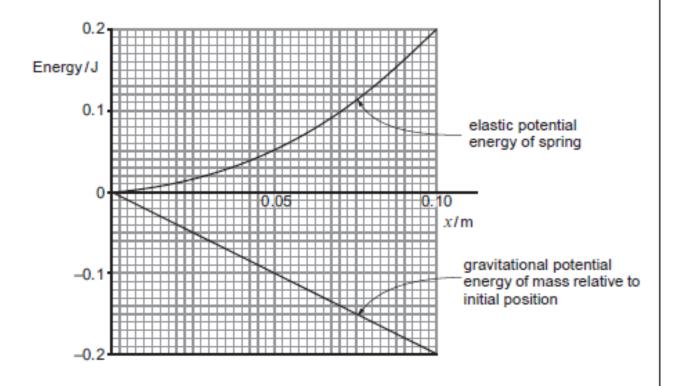
2.	A wo	oden block on a string (ballis ting ranges. It is used to find t both the principles of conserv	stic pendulum) is a device the speed of a bullet. To ation of energy and mo	ce that can be found at well equipped calculate the speed it is necessary to mentum.
	(a)	State the principle of conse	rvation of energy.	[1]
	(b)	Just before impact		nto a pendulum of mass 1.90 kg, the pendulum string is 2.00 metres long. Block swings to maximum height 2.00 m
		(i) Show that the height,	bullet h, the block rises is app	proximately 0.70 m. [2]
		(ii) Using the principle of and the bullet just after	f conservation of energ er the bullet has embed	y, determine the velocity of the block ded itself in the block. [2]

(c)	(i)	State the principle of conservation of momentum.	[2]
	(ii)	Determine the speed of the bullet just before it enters the block.	[2]
(d)	Disc expe	cuss whether you feel it would be appropriate for a Physics teacher to eriment in school with a group of sixth form students.	o carry out this [2]

3. Helen is riding an electric bike (a bike that is assisted by an electric motor) up a hill at a speed of 4.5 m s⁻¹. At point A she starts the electric motor and accelerates uniformly reaching a speed of 9.2 m s⁻¹ at B. Whilst accelerating she also gains a height of 4.0 m as shown in the diagram below.

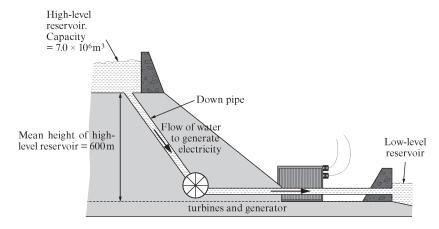


(a)	Show that the time taken for Helen's journey between A and B is approximately 15 s. [2]
(b)	Helen and the bike have a combined mass of 95 kg. Determine the gain in total energy between A and B.


(c)	(i)	If the bike's electric motor operates at 36 V and 7.0 A calculate the electrical energy used by the motor between A and B. [2]
	(ii)	Helen, by pedalling, also provides 5500 J of work between A and B. Determine the efficiency of the electric motor. <i>Ignore all resistive forces on Helen and the bike</i> . [2]
	(iii)	In practice resistive forces will act. Identify these forces and where they act. [2]
(d)		en believes that by riding an electrically powered bike to the shops rather than using car she is benefiting the environment. Explain whether or not Helen is correct. [2]

4. (a) State the principle of conservation of energy. [2]

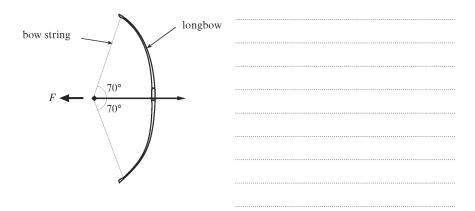
(b) A mass, m, is attached to a light spring whose top end is held firmly. Initially the mass is supported by a platform with the spring unextended. The platform is suddenly removed so the mass falls.



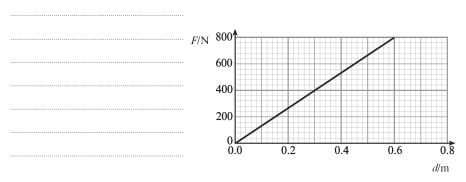
The graphs show how the elastic potential energy of the spring and the gravitational potential energy of the mass vary with the distance, x, of the mass below the platform (see diagrams).

	(i)	Assuming that resistive forces are negligible, use data from the graphs to calculate:		
		I. the spring constant, k;	[3]	
		II. the mass, m;	[2]	
		III. the kinetic energy of m when $x = 0.050$ m.	[2]	
	(ii)	Sketch a graph of the kinetic energy of the mass, m, against x on the	same grid as	
	(ii)	Sketch a graph of the kinetic energy of the mass, m , against x on the the other graphs.	same grid as [2]	
(c)	In the		[2] alls is 0.10 m.	
(c)	In the	the other graphs. e arrangement described in (b), the furthest distance, $x_{\rm max}$, that m f	[2] alls is 0.10 m.	
(c)	In the	the other graphs. e arrangement described in (b), the furthest distance, $x_{\rm max}$, that m f	[2] alls is 0.10 m.	
(c)	In the	the other graphs. e arrangement described in (b), the furthest distance, $x_{\rm max}$, that m f	[2] alls is 0.10 m.	
	In the Howe	the other graphs. e arrangement described in (b), the furthest distance, $x_{\rm max}$, that m f	alls is 0.10 m. ortional to the nent. [4]	
	In the Howe	the other graphs. e arrangement described in (b) , the furthest distance, x_{\max} , that m fever, a larger mass would fall further. In theory, x_{\max} is directly propose, m . Describe briefly how you would verify this relationship by experimental a	alls is 0.10 m. ortional to the nent. [4]	
	In the Howe	the other graphs. e arrangement described in (b) , the furthest distance, x_{\max} , that m fever, a larger mass would fall further. In theory, x_{\max} is directly propose, m . Describe briefly how you would verify this relationship by experimental a	alls is 0.10 m. ortional to the lent. [4]	
	In the Howe	the other graphs. e arrangement described in (b), the furthest distance, x_{\max} , that m fever, a larger mass would fall further. In theory, x_{\max} is directly propose, m . Describe briefly how you would verify this relationship by experimental ex	alls is 0.10 m. ortional to the lent. [4]	

The hydroelectric power station at Dinorwig in North Wales is the largest of its kind in Europe. A simplified diagram showing the main features of the plant is shown.



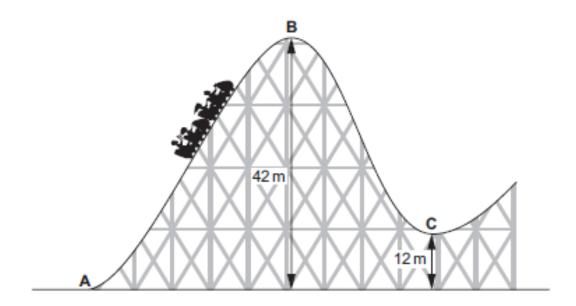
(a)	Use the information in the diagram to show that the gravitational potential energy stored in the high-level reservoir is approximately 4×10^{13} J. [Density of water = $1000 \mathrm{kg}\mathrm{m}^{-3}$].
(b)	The power plant has six 300 MW generators. Calculate the longest time for which the stored energy could provide power at maximum output given that the generation proces is 90% efficient [i.e. 10% of the gravitational potential energy stored in the high levels.]
	reservoir is wasted]. [3


(i) 	Calculate the mean rate of flow of water (in kg s ⁻¹) through the turbines of power station when it is operating at full power.	the [1]
(ii)	After passing through the turbines the water enters the lower lake at a speed o $20\mathrm{ms^{-1}}$. Use your answer to $(c)(i)$ to calculate the kinetic energy per seccipower] of this water.	
(iii)	Calculate the wasted energy per second (power lost) during the generat process.	[2]
(iv)	Hence show that your answer to (c) (ii) represents between 30% and 40% of wasted power.	
(v)	Where else would energy be wasted during the generating process?	[1]

6.

(a) The medieval longbow was a devastatingly effective weapon. Assuming that a horizontal force F of 800 N is needed to draw back the bow string, show that the tension T in the string is approximately 1170 N.

(b) (i) The graph shows the variation of F with d for the longbow, where d is the distance the centre of the string is pulled back. Calculate the energy stored in the bow when the tension in the string is $1170\,\mathrm{N}$.

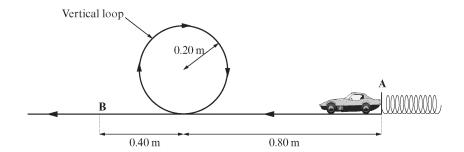


(ii) Hence, stating any assumptions you make, show that the speed of the arrow as it leaves the bow is about $100\,\mathrm{m\,s^{-1}}$. Take the mass of the arrow to be $50\times10^{-3}\,\mathrm{kg}$. [3]

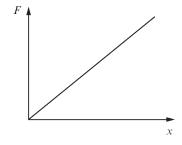
(c)	The arrow is released horizontally at this speed from 1.5 m above the ground as shown. The arrow continues its path until it embeds itself into the ground a horizontal distance <i>D</i> from the point of release. Ignoring the effects of air on the arrow , calculate	
	(i) the time taken for the arrow to reach the ground, [3]	1.5 m
	(ii) the horizontal distance <i>D</i> ,	[2]
	(iii) the resultant velocity of the arrow when it hits the ground.	[5]

theonlinephysicstutor.com

7. The diagram shows part of a rollercoaster ride at a theme park.


(a) A motor with a power output of 65 kW and a chain mechanism pulls the carriages of mass 2 600 kg from A to B in a time of 32 s.

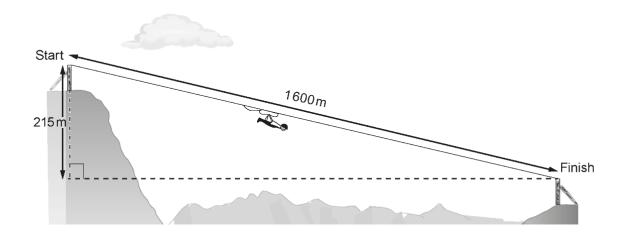
(i)	Show that the work done by the motor in 32 seconds is approximately 2 MJ.	[1]
(ii)	Hence calculate the efficiency of the mechanism, assuming the carriages momentarily at rest at B.	are [3]


(b)	At B, the carriages become disconnected from the motor and the carriages move under the influence of gravity for the rest of the ride. In moving from B to C, a distance along the track of 36 m, the carriages experience a mean resistive force of 2.8 kN. Calculate the speed of the carriages at C. [5]	
		ŀ

1.	(a)	(i)	State the principle of conservation of energy.	[1
		(ii)	Explain how the principle applies to an object falling from rest through the air.	[3
	(b)	botte	nild of mass 16kg starts from rest at the top of a playground slide and reaches om of the slide with a speed of 6.0 ms ⁻¹ . The slide is 4.0 m long and there is a rence in height of 2.4 m between the top and the bottom.	the
		(i)	Calculate the work done against friction.	[3]
		(ii)	Use your answer to (b) (i) to calculate the mean frictional force acting on the chi	ld. [2

9. A compressed spring is used to shoot a small toy car along a track which contains a circular vertical loop of radius 0.20 m. The spring obeys Hooke's law. Points A and B are referred to later in the question.

(a) The sketch graph shows how the extension, x, of the spring varies with the force, F, applied to it.



(i)	Explain how the graph shows th	hat the spring obeys Hooke's law.	[1]
(-)	Emplana new the Braight blickers	and the oping coefs are care a activity	L^.

(ii)	Use the graph to show that the elastic potential energy stored in $=\frac{1}{2}kx^2$, where k is the spring constant.	the spring

<i>(b)</i>	The	spring requires a force of 0.10 N to compress it 1.0 mm.
	(i)	Calculate the elastic potential energy stored in it when it is compressed by 80 mm. [3]
	(ii)	A small car of mass 0.04kg is placed at point A, against the end of the spring, which is then released. Using your answer to $(b)(i)$, calculate the speed with which the car leaves the spring.
(c)		speed of the car at point B (after it has completed the loop) is 0.2 m s ⁻¹ less than its d at A . Determine the mean frictional force on the car during its motion from A to [4]

(a)	(i)	Define power.	1]
	(ii)	Show how the unit W can be expressed in terms of the SI base units kg , m and g	s . 2]
(1-)	TI		
(b)		longest zip-wire ride in the UK is in Snowdonia, North Wales. It is 1600 m long ar rertical drop from start to finish is 215 m as shown. The diagram is not to scale.	าต

from rest. Use this data and information from the diagram opposite to determine the mean force opposing the motion of the person. [4]
(ii) The time taken to travel from start to finish is 46 s. Calculate the mean rate at which energy is transferred to the surroundings during the journey. [2]