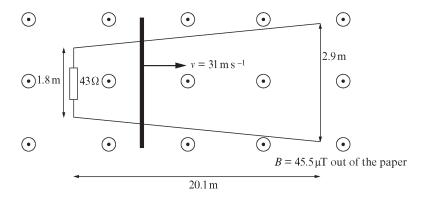

1. A strong magnet is held on a spring and performs simple harmonic motion near a flat coil as shown.

(a) Explain briefly why an alternating emf is induced in the coil. [3]

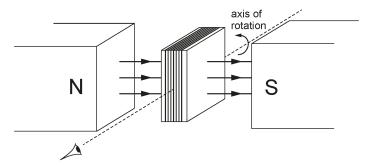

(b) (i) The induced emf varies in magnitude sinusoidally with a peak value of ±0.707 V. Calculate the rms value of the induced emf. [1]

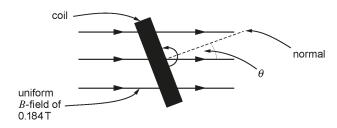
(ii) State the value of the rate of change of flux through each turn of the coil when the peak value of 0.707 V is obtained and explain how you obtained your answer. [3]

(c) One end of the coil is connected with the other so that there is an induced current. Explain why the magnet's motion is now damped. [3]

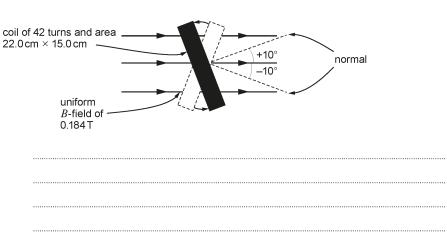
2.	(a)	State the two laws of electromagnetic induction (Faraday's law and Lenz's law).	3]

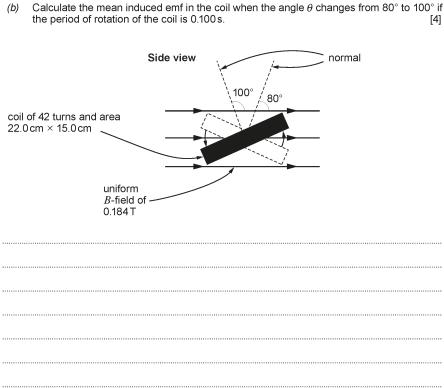
	•••••		


(b) A thick conducting bar is moved with constant speed over non-parallel conducting rails as shown below. The rails have negligible resistance and the B-field is uniform.

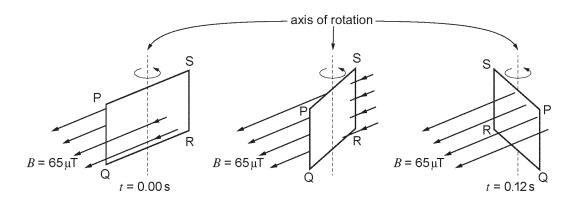

(i)	Indicate the direction of the induced current on the diagram and explai arrived at your answer.	n how you [2]
•••••		

(ii)	The conductor moves at a constant speed of 31 m s ⁻¹ . Use Faraday's law to explain why the induced emf increases. [2]
(iii)	The conductor starts moving from the end near the 43Ω resistor. Calculate the mean current in the resistor when the conducting bar has travelled the full 20.1 m length of the track. [4]
•••••	


A rectangular coil rotates at a constant angular velocity within a uniform magnetic field. The coil has 42 turns and area 22.0 cm × 15.0 cm. The diagram below is a simplified 3D diagram of the coil when the magnetic field is perpendicular to the coil.


The second diagram is a 2D representation of the coil looking along the axis of rotation.

(a) (i) Calculate the flux **linkage** of the coil for the angles $\theta = -10^{\circ}$ and $\theta = +10^{\circ}$. [2]


(ii)	Explain why the mean induced emf is zero as the coil moves between $\theta = -10^{\circ}$ and $\theta = +10^{\circ}$. [1]

(c)	An oscilloscop frequency of 1 5 V per division be seen on the	2.5 H: 1 (ver	z and tically	d pro y) an	ducii d 20	ng an rm ms per di	s pd visior	of 12	2.0 V. rizon	The tally)	oscillo Sketch	scope	setting	s are
					•••••	•••••							•••••	
													•••••	
						İ								
						<u> </u>								
						<u> </u>								
						-								
						<u> </u>								
						+								

4.

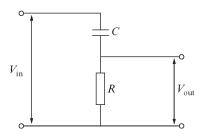
A large square loop has sides of length 0.815 m and is rotated through 90° in a uniform magnetic field of $65\,\mu\text{T}$. The diagrams show the same square loop at different times.

(a) Determine the magnetic flux through the square loop:

(i) when t = 0.00s (sides QR and SP are parallel to the B-field);
(ii) and when t = 0.12s (PQ, QR, RS and SP are perpendicular to the B-field).

(b) The square loop is made of copper. Explain why there is a current in the loop as it is rotated.

(c)	Explain how Lenz's law will give the direction of the forces acting on the sides PQ and RS as the square loop is rotated. [2]
(d)	The copper wire from which the square loop is made has a circular cross-section of diameter 6.0 mm. The resistivity of copper is $1.67 \times 10^{-8} \Omega$ m. Calculate the mean current flowing through the square loop as it is rotated between $t = 0.00$ s and $t = 0.12$ s. [5]
	copper wire in the shape of a square loop 0.815 m
•••••	6.0 mm
••••••	
••••••	
••••••	


(b)	State and explain briefly losses.	three ways in which the design	of a transformer reduces energy [3]
(b)	State and explain briefly losses.	three ways in which the design	of a transformer reduces energy [3]
(b)	State and explain briefly losses.	three ways in which the design	of a transformer reduces energy [3]
(b) 	State and explain briefly losses.	three ways in which the design	of a transformer reduces energy [3]
(b)	State and explain briefly losses.	three ways in which the design	of a transformer reduces energy [3]
(b)	State and explain briefly losses.	three ways in which the design	of a transformer reduces energy [3]
(b)	State and explain briefly losses.	three ways in which the design	of a transformer reduces energy [3]

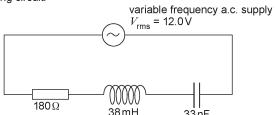
(c) (i) Calculate the reactances of the capacitor and inductor at the frequency shown.[3] $V_{\text{rms}} = 14.4 \text{ V}, \qquad f = 3817 \text{ Hz}$

rms			
2.2 kΩ	3.7 mH	470 nF	

	$2.2\mathrm{k}\Omega$ $3.7\mathrm{mH}$ 11 $470\mathrm{nF}$	
(ii)	How can you tell that this is the resonance frequency of the circuit?	[1
(iii)	Calculate the current at the resonance frequency of 3817 Hz.	[1
(iv)	Calculate the current when the frequency is 38.17 kHz (the rms pd remains 14.4 V).	[3

(d) (i) Explain why the circuit shown is a high pass filter.

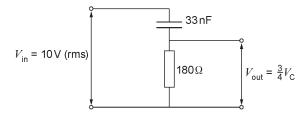
[3]


(ii) $C = 470\,\mathrm{nF}$ and $R = 2.2\,\mathrm{k}\Omega$. Using a phasor diagram or otherwise, calculate the frequency when $V_{\mathrm{out}} = \frac{1}{\sqrt{2}}\,V_{\mathrm{in}}$. [Hint: $\cos 45^\circ = \frac{1}{\sqrt{2}}$.] [3]

6. (a) A sinusoidal pd of 6 V (rms) and frequency 0.9 Hz is supplied to the primary solenoid.

secondary (16 turns)

(i)	State how the reading on the voltmeter varies and explain what causes the voltme reading to vary.	eter [4]
(ii)	Give a reason why the rms pd measured by the voltmeter will be much lower the 6V.	han [1]


(b) For the following circuit:

			180Ω	₩₩ 38 mH	 33 nF	
	(i)	calculate the	resonance fre	equency;		[2]
	(ii)	calculate the	rms pd acros	s each compo	nent at resonance.	[4]
(c)	The	frequency of the	he a.c. supply	is now set to 5	.8kHz.	
	(i)	Calculate the	e rms current.			[3]

(11)	diagram may assist your calculation).	the current	and the	applied pd (a	[3]
					••••••
••••••				•••••	
			••••••		

(d) In the high pass filter shown the rms output pd is $\frac{3}{4}$ of the rms pd across the capacitor.

Calculate the frequency of the input pd.	[3
	•••••