
1.	(a)	(i)	Define the Young modulus of a material.	1]
		(ii)	Express the unit of the Young modulus in terms of S.I. base units.	3]
	(b)	(ī)	When a rubber band is gradually loaded and then unloaded it shows <i>hysteres</i> and <i>permanent set</i> . Sketch, and clearly label a force-extension graph for rubber tillustrate these two effects.	is to 3]
			Force A	

Extension

(ii)	Considering the molecular structure of rubber explain why it has a much lower value of Young modulus than that of a metal. [2]
• • • • • • • •	
•••••	
•••••	
(iii)	What is the effect on the Young modulus of rubber when its temperature rises? Explain your answer. [2]
(iii)	
(iii)	

2

 Emily carries out an experiment to obtain a force-extension graph for a thin glass fibre. She loads the thin glass fibre until it breaks. The force-extension graph obtained is shown below.

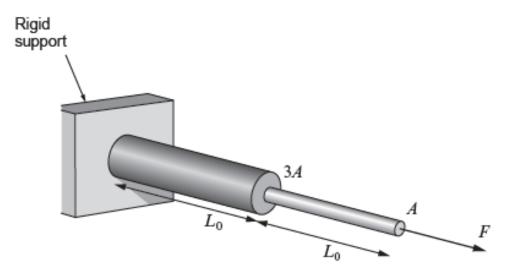
(a) (i) Emily measures the length and diameter of the glass fibre and finds them to be 19.8 cm and 1.01 mm respectively. Suggest what measuring instruments she uses.
[1]

	[3]

	(iii)	Write a risk assessment for Emily's experiment. [2]	
	(iv)	Determine the energy stored in the glass just before breaking point is reached. [2]	
(b)	Glass	s is a brittle material. Describe the process by which glass fractures. [3]	

 A child's jumping toy uses the compression of a spring to fire it up into the air. The spring used requires a force of 0.50 N to compress it by 1.0 cm.

(a)	State	e Hooke's law.	[1]
(b)	The	toy has a mass of 20 g and the spring is compressed by 6.0 cm and then released	l.
	(i)	Calculate the velocity with which it leaves the ground.	[3]
			· • • • • •
	(ii)	Determine the initial acceleration of the toy as the spring extends. State any assumption you make.	[2]

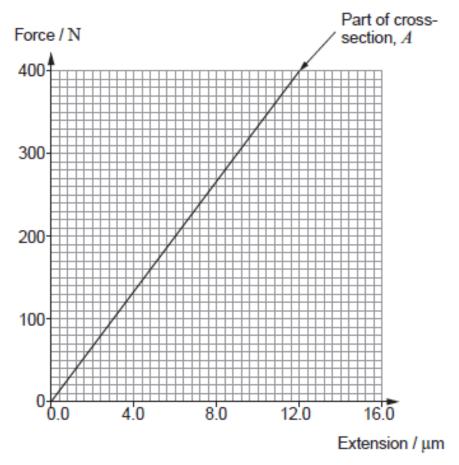

(c)	(i)	Ignoring air resistance, determine the ma	aximum height gained by the toy. [3]
	(ii)	Determine the total time of flight.	[2]

Describe a method to investigate the force-extension properties of rubber in the form of an elastic band as it is loaded. You should describe how the extension of the rubber is accurately measured. [3] (b) The results from such an experiment for a rubber band of unstretched length 8.0 cm are plotted in a graph. Force / N 30 20

50 Extension / cm

oint B. [1]	(i)
ubber in the region AB. Assume the band has:m². [3]	(ii)
ober, explain why the gradient at C is less than [3]	c) By re the g

The bar in the figure below is made from a single piece of metal. It consists of two parts of equal length L_0 and cross-sectional area A and 3A. The diagram is not drawn to scale. 5.

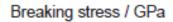


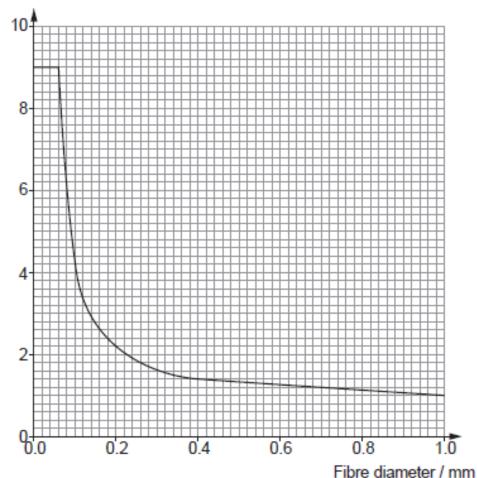
Show that the total extension, $\Delta x_{\rm total}$, of the bar under the action of an applied force, F, as shown in the diagram, can be given by:

$$\Delta x_{\text{total}} = \frac{4FL_0}{3AE}$$

٧	vhe	ere	Ε	rep	res	en	ts t	he	You	ung	j m	od	ulu	s of	f the	e m	eta	l in t	the	bar.			[3]
 ••••												•••••			• • • • •				•••••		 	 	
 												•••••							•••••		 	 	

(ii) The graph shows the variation of extension with applied force for the part of cross-section, A. Draw (on the same grid) the expected force-extension graph for the segment of cross-section 3A.
[1]

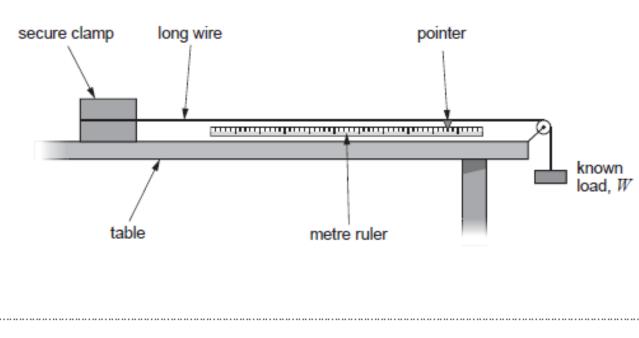



	$A = 2.0 \times 10^{-4} \mathrm{m}^2$.	[3]
iv)	Calculate the elastic potential energy stored in the whole bar when F = 400 N.	[2]

Determine the Young modulus of the metal in the bar given that L_0 = 1.2m and

(iii)

(b) Glass is a brittle material. The graph shows how the breaking stress of glass, in the form of thin fibres and rods, varies with the diameter of the fibre.



(1)	of diameter 0.2 mm.	[3]
(ii)	Explain the term <i>brittle fracture</i> as it applies to glass and give a reason why verthin fibres have a greater breaking stress than thicker ones.	ery [2]

6.	(a)	Materials can be classified as <i>crystalline</i> , <i>amorphous</i> or <i>polymeric</i> . Explain the meaning of two of the terms in italics in terms of microscopic structure. Give one example of each of your chosen materials. [4]

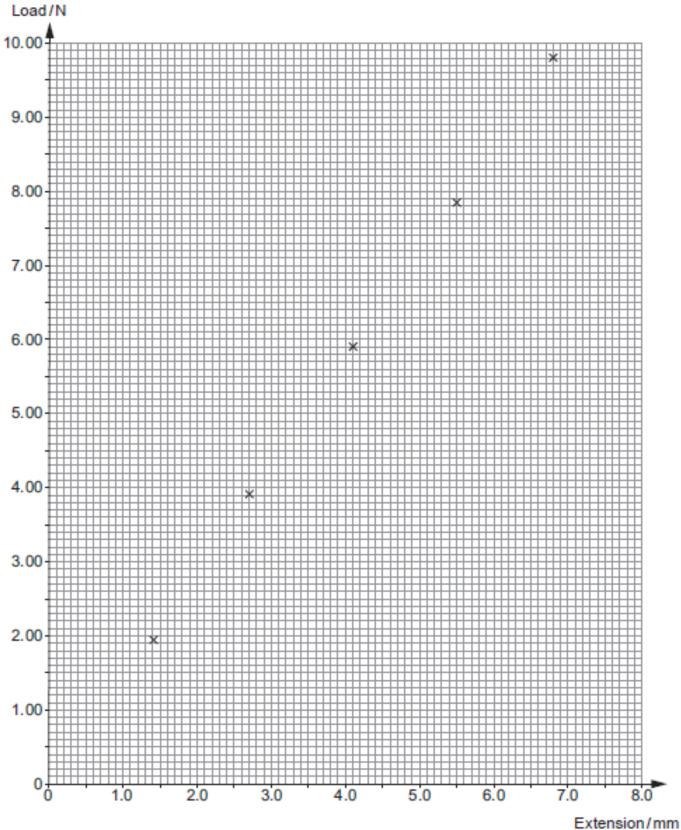
(b) The diagram shows apparatus that can be used to determine the Young modulus of a metal in the form of a wire. Describe the measurements which must be made, how they should be used to determine the Young modulus and precautions to minimise uncertainties.
[6 QER]

7.

Kiera uses the following apparatus to find the Young modulus of a metal alloy in the form of a wire.

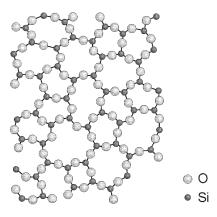
	temperature. [2]	1
(b)	Kiera uses a micrometer of resolution 0.01 mm to measure the mean diameter of the wire She determines the mean diameter to be 0.16 mm. Calculate the cross-sectional area of the wire in m ² , along with its percentage uncertainty.	f
(c)	Kiera then uses a metre ruler with a resolution of 1 mm to measure the initial length of the wire. She determines the length to be 1.680 m. Show, with an appropriate calculation, that the percentage uncertainty in this reading can be considered negligible.	t

(d) Kiera adds various masses to the test wire and measures the extension. The table shows the extension of the wire for increasing load.


_

Load (negligible absolute uncertainty) / N	Mean extension / mm	Absolute uncertainty in extension / mm
1.96	1.4	± 0.2
3.92	2.7	± 0.2
5.89	4.1	± 0.2
7.85	5.5	± 0.2
9.81	6.8	± 0.2

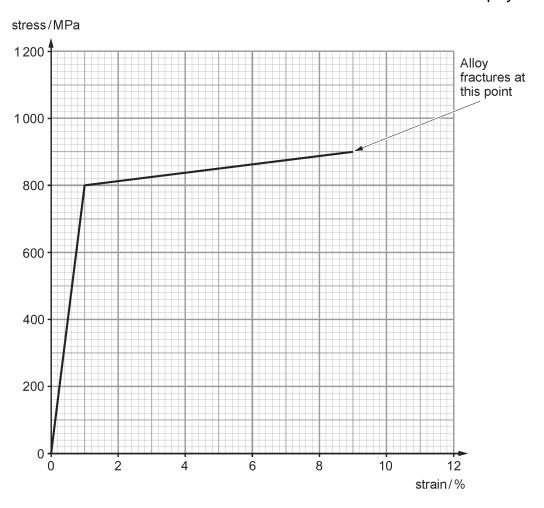
Kiera plots a graph (shown opposite) of load against extension from her data, but does not include error bars.


	(i)	I.	Add error bars for the extension on the plotted points.	[1]
		II.	Draw lines of maximum gradient and minimum gradient and de gradients of both lines.	termine the
	(ii)	Hend	e, calculate the mean gradient and the percentage uncertainty in	its value.
				[2]
(e)			the Young modulus of the metal alloy, along with its absolute uncer er to an appropriate number of significant figures.	tainty. Give [5]
• • • • • • • • • • • • • • • • • • • •				

(1)	state which of the measurements contributes most to the overall uncertainty in young answer and suggest one change Kiera could make to her experiment which would redure the size of this uncertainty.	

8.

(a) The picture shows the microscopic structure of glass, an amorphous solid.

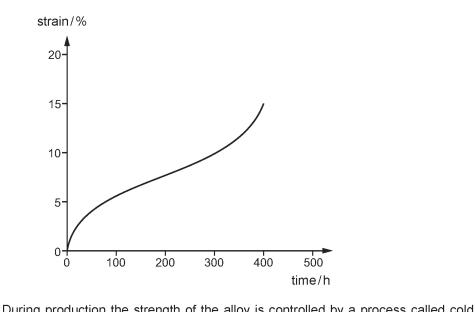


Explain the following macroscopic properties of glass.

(i) Glass fibres are brittle, showing no plastic deformation before fracture. [2]

(ii) A sheet of glass can be fractured accurately and cleanly if its surface is scratched and then the glass is bent slightly. [You may wish to draw a labelled diagram to support your answer.] [2]

	while th		eens are strengthened by using jets of cold air t glass. This causes the outside to contract quick ter, the inside cools and contracts. Explain how the difficult to break.		
able		craft and spacecraft appli te under extremely diverse ne table.			
Aluminium	alloy	Young modulus/GPa	Yield strength/MPa	Maximum tensile strain/%	
Alloy A	4	80	800	9	
Alloy E	3	80	1000	5	
Alloy (60	600	15	
(i)	Use inf 80 GPa	ormation from the graph .	to confirm that the You	ng modulus of alloy A 	
 (ii)		is in the form of a cylinde	r of length 2.5 m and dia		
		k done to stretch this allo			
			y to breaking point.		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	k done to stretch this allo	y to breaking point.		



(iii) Draw, on the same axes, a simplified stress against strain graph for **alloy B** using data from the table opposite. [3]

(iv)	When these alloys are placed under a constant stress over a long period of time all three undergo <i>creep</i> leading to <i>necking</i> and eventually fracture.

I.	Explain the terms in italics.	[2]
	Creep:	
		· · · · · · · · ·
	Necking:	

II. A creep curve for **alloy C** is shown. The alloy was subjected to a constant stress of 100 MPa. Using information in the table on page 28, sketch on the same graph (below) a creep curve which could represent alloy C when it is subjected to a constant stress of 120 MPa. [2]

(v)	working (or work hardening). Describe this process and explain how it increases the strength of the alloy under production.	ne 3]
		•••
		•••
		•••