3.

1.		Quantin	Marking details	Marks available					
		Questic	Marking details	A01	AO2	AO3	Total	Maths	Prac
	2	2 (a) Use of Snell's law (1), e.g. $\sin 18.4^{\circ} = 1.65 \sin \theta_2$		1	1		2	1	
	Manipulation or Ans		Manipulation or Answer = 11.0° (1) accept $\sin^{-1}\left(\frac{\sin 18.4^{\circ}}{1.65}\right)$ but not						
			just 10°						
		(b) $\phi = 90 - \theta (79 \text{ or } 80) (1)$							
			$n_2 \sin \theta_2 = n_3 \sin 90$ applied (1) or $n_2 \sin 79 = n_3 \sin \theta$ Answer = 73.2° (1) or no solution for θ Conclusion = Yes since ϕ greater than critical (1) [allow ecf on a calculated value of critical angle] or Yes refraction is impossible			4	4	3	
			Question 2 total	1	1	4	6	4	0

		Marking dataile	Marks available					
u	uestion	Marking details	A01	A02	AO3	Total	Maths	Prac
3	(a)	Refraction is a change in direction of the travel of waves (1) Waves travel more slowly in glass than in air (1) Therefore AB is greater than CD (1)	1 1	1 1		3		
-	(b)	Measuring lengths AB = 2.9 cm and CD = 1.8 cm within 0.1 cm (1)	1					
		Speed = $\frac{BD}{t}$ and $\frac{AC}{t}$ (can be implied) (ecf) (1)		1				
		Speed = 1.9 [or 1.86] × 108 [m s ⁻¹] (1)		1		3	2	
		Question 3 total	3	3	0	6	2	0

. [Question		Marking details			Marks a	available				
L		Question		Marking details	A01	A02	AO3	Total	Maths	Prac		
	7 (8			θ _{sir} = 53° (1) Beam bends sharply to		Beam bends sharply to the left at the surface (1)	1	1 1		3	2	
				$\sin \theta = \frac{1}{1.60} [=0.625]$ or equivalent (eg $\theta_{\rm C}$ = 39°) (1) x = 62.5 / 63 mm (1)		1		3	2			
	(l	(b)		Marking points A1. Light [travelling at small angles to axis] hitting core/cladding boundary is totally internally reflected A2. [So] transmitted along fibre without loss B3. Light paths at different angles [to axis] are of different lengths [for given length of fibre] B4. [So] take [slightly] different times and [so] [each] pulse spread out [over time] on arrival at far end C5. Pulses may overlap (if in rapid sequence) C6. Spreading [accept mm dispersion] increases with length of fibre, [so] overlap more likely if fibre longer 5-6 marks Expect at least 4 points made from all of sections A, B and C There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks Expect at least 3 points made from at least two sections from A, B or C There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure.	6			6				
				1-2 marks Any 2 points made There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.								
				Question 7 total	9	3	0	12	4	0		

5.

	ati		Marking details	Marks available AO1 AO2 AO3 Total Maths Pr					
Q	uesti	on	Marking details				Prac		
7. (a) (i)		(i)	$v_{\rm plastic} = {{\rm AC} \over {\rm BD}} \times c$ or equivalent or by implication (1) BD = 44 or 45 or 46 [mm]; AC = 31 or 32 or 33 [mm] (1) $v_{\rm plastic} = (2.1 \pm 0.1) \times 10^8 [{\rm m s^{-1}}]$ (1)		3		3	3	
		(ii)	$n = 1.4 [\pm 0.1] ecf$		1		1	1	
	(b)	(i)	A correct relevant time calculation e.g. for 120 m, 608 ns or for 120.9 m, 613 ns or by implication (1) Extra time by zig-zag route = 5 ns [4.6 n[s]] (1) Therefore overlap will occur, [as $4.6 \text{ns} > 4.0 \text{ns}]$ no ecf (1) [Allow 1 mark if n (refractive index) omitted leading to 3.0 ns delay and hence no overlap] Alternative: Extra distance for 4.0ns extra time $\frac{3.00 \times 10^8 \times 4.0 \times 10^9}{1.52}$ (1) = 0.79 [m] (1) Therefore overlap will occur [as $0.79 < 0.90 \text{m}$] (1) [Allow 1 mark if n (refractive index) omitted leading to 1.2 m delay and hence no overlap]			3	3	2	
		(ii)	$n_{\rm clad} [\sin 90^{\circ}] = 1.520 \sin 83^{\circ} \text{or equivalent (1)}$ $n_{\rm clad} [\sin 90^{\circ}] = 1.51 (1)$		2		2	2	
			Question 7 total	0	6	3	9	8	0

Marks available Question Marking details A01 A02 AO3 Total Maths Prac Rearranging $\sin c = \frac{1.47 \sin 90}{1.52}$ (1) 6 (i) (a) 2 Critical angle = 75.3° (1) 2 2 Substitution into Snell's law i.e. $\sin 15^\circ = 1.52 \sin \theta_r$ (1) (ii) 1 Refracted angle = 9.8° (1) 1 A = 80.2° (90 - θ_r) (ecf on θ_r) (1) 1 3 2 Angle A is greater than critical angle (ecf on A and critical angle) (iii) So total internal reflection and light will travel down the fibre OR 2 2 technician not correct (1) Substituting values in speed = $\frac{\text{distance}}{\text{time}}$ (1) (b) 1 1 Speed of light in fibre = $\frac{c}{1.52}$ (1) 1 3 3 Time = 7.6×10^{-5} s (1) Monomode - parallel to axis/straight - Multimode zig zag paths 1 (i) 1 (c) (ii) No spreading of pulses OR only one path for data (1) Each pulse arrives at same time OR No overlapping of pulses (1) Allows faster rate of data transfer (1) 3 3 6 6 2 14 7 0 Question 6 total

Ques	tion	Marking details		Marks a				
Ques	stion	marking details	A01	A02	AO3	Total	Maths	Prac
œ	(a)	[Constant] velocity horizontal (1) Accelerating / force downwards [b.o.d. motion under gravity] (1) Projectile motion → 1 mark		2		2		
	(b)	$\phi = \sin^{-1}\left(\frac{1.55}{1.58}\right)$ (1) 78.82°, 78.8° or 79° etc. seen (not just 80) (1) 1.38 [rad] → 1st mark	1	1		2	2	
	(c)	Maximum angle for propagation with TIR (1) Rotational symmetry (about central axis) (1)		2		2		
	(d)	$\theta_2 = 90 - 80 = 10$ degree or similar (11.2 degree etc.) (1) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ used (1) Rearrangement $\theta_1 = \sin^{-1} \left(\frac{n_2}{n_1} \sin \theta_2 \right)$ (1)	1	1 1 1		4	3	
		Answer = 17.9° or 15.9° if 10° used (1)		'		7	Ĭ	
	(e)	Dispersion increases with length of fibre (1) [Maximum] bit rate and distance proportional [however stated, eg. Accept distance × 10 → bit-rate down by factor of 10] (1) Conclusion consistent with argument (1)			3	3		
	(f)	20 × 0.8 dB or 16 dB seen (1) Correct comparison with table e.g. 15 dB too much (0.03) (1) Correct conclusion: no, signal drops too much / distance too large (1) [NB Either distance for 6% = 15.3 km or 20 km → 2.5 % gives the first two marks].			3	3	2	
	(g)	Wavelength is decreased by factor n or $v=cln$ (1) Wavelength is 820 nm (1) So thickness of around 8.2 μ m is required (1) 13 μ m student is wrong (1) [Allow Aled correct because 1.3 μ m \times 10 = 13 μ m for 1 mark]			4	4	2	
		Question 8 total	2	8	10	20	9	0

(i) speed =
$$\frac{3.00 \times 10^8}{1.54}$$
 (1)
time = $\frac{\text{distance}}{\text{speed}}$ (1) [transposed at any stage]
= 1.027×10^{-5} s (1) [omission of 1.54 loses just 1 mark]

(ii) I.
$$AB = \frac{AC}{\sin 77^{\circ}}$$
 or $AB = \frac{AC}{\cos 13^{\circ}}$ or equiv. (1)

II. Zigzag time = $1.027 \times 10^{-5} \times 1.026$ s (1) [or Extra time = $1.027 \times 10^{-5} \times 0.026$ or by impl.] Extra time = 2.7×10^{-7} s [e.c.f. on speed] (1)

Bit of data arrives spread out over a period of time [accept: data smeared or multimode dispersion] (1). Data bits could overlap on arrival / can't distinguish (1)

2	(a)	(i)	$v_{\rm air} > v_{\rm glass}(1), \ f_{\rm air} = f_{\rm glass} \ { m and} \ \lambda_{\rm air} > \lambda_{\rm glass}(1)$	2
		(ii)	Cycles [or oscillation] can't appear or disappear [at boundary] or	1
			equiv. / frequency determined by the source [not just <i>f</i> is constant]	1
	(b)	(i)	$[1.00]\sin 40^\circ = 1.52\sin \phi$ [where $\phi = \text{angle of refraction}] (1)$	
			$\phi = 25^{\circ} (1); \ \theta = 90^{\circ} - 25^{\circ} (1) = [65^{\circ}]$	3
		(ii)	gin a = 1 [or equiv] or:	
			$\sin c = \frac{1}{1.52} [\text{or equiv}] \qquad \begin{bmatrix} \mathbf{or} : \\ \sin^{-1} \left(1.52 \sin 65^{\circ} \right) \text{gives "error"} \end{bmatrix}$	
			$c = 41^{\circ} (1)$ (1), so refraction not possible (1)	
			$65^{\circ} > 41^{\circ}$ or remark (1)[free	_
		(iii)	standing] I. Diagram: Reasonable path drawn [no gross departure from law of	2
		(111)	reflection] with emergent ray in correct quadrant (1)	1
			II. 2 sensible parallel paths inside block labelled (1)	
			Emergent ray labelled as parallel to incident ray. (1)	2
	(c)		Any 2× (1) from:	
	(0)		• minimises multimode dispersion [or equiv](✓)	
			• cuts down range of path lengths (✓)	
			 less pulse broadening or less likelihood of overlapping or 	
			more rapid data [allow: smearing and jumbling] sequence	2
			possible (✓) [not interfere or distorted]	2
				[13]

^{10.} (a)	(i) $v_{air} > v_{glass}(1)$, $f_{air} = f_{glass}$ and $\lambda_{air} > \lambda_{glass}(1)$ (ii) Cycles [or oscillation] can't appear or disappear [at boundary] or			
	(11)	equiv. / frequency determined by		1
<i>(b)</i>		$[1.00]\sin 40^{\circ} = 1.52\sin \phi$ [where ϕ		
		$\phi = 25^{\circ} (1); \ \theta = 90^{\circ} - 25^{\circ} (1) = [0]$	65°]	3
	(11)	$\sin c = \frac{1}{1} [\text{or equiv}]$	or:	
		$\sin \epsilon = \frac{1.52}{1.52}$ [or equiv]	sin ⁻¹ (1.52 sin 65°) gives "error"	
		$\phi = 25^{\circ} (1); \ \theta = 90^{\circ} - 25^{\circ} (1) = [0]$ $\sin c = \frac{1}{1.52} [\text{or equiv}]$ $c = 41^{\circ} (1)$ $65^{\circ} > 41^{\circ} \text{ or remark } (1)[\text{free}]$	(1), so refraction not possible (1)	
		standing]		2
	(111)	 Diagram: Reasonable path dra reflection] with emergent ray in 	wn [no gross departure from law of	1
		II. 2 sensible parallel paths inside		•
		Emergent ray labelled as paral		2
(c)		_	engths () less likelihood of overlapping or nearing and jumbling] sequence</td <td>2</td>	2
		, , , , , , , , , , , , , , , , , , , ,	,	[13]
	I	I	ı	

Question		Marking details	Marks Available
(a)	(i)	normal to surface of block at P	[2]
		(II) $1.58 \sin 25^\circ = [1.00] \sin a$ (1) or equivalent or by implication $a = 42^\circ$ (1)	[2]
	(ii)	(I) Either $c = 39^{\circ}$ (1) $60^{\circ} > 39^{\circ}$ or equivalent (1) OR 1.58 sin 60° gives error (1) So refraction not possible or TIR [needs <i>attempt</i> to justify] (1)	[2]
		(II) TIR at Q and at least one more instance of TIR with subsequent ecf (1)	
		As drawn with reflected ray at Q going off East of South, eventually emerging through diameter face ,with at least one more TIR event.(1)	[2]
		air glass air	
(6)	(i) (ii)	Thinner Monomode: parallel to axis (accept straight)	[1]
	(iii)	Multimode: zig-zag paths as well (1) or some paths involve reflections Only one route for data (1) [no zig-zag routes] Each pulse [data element etc] arrives [at other end of fibre] at same time (1)	[1]
		No overlapping of pulses (1) [even over long distances] Question 3 Total	[3] [13]

12						
12. <u>(a)</u>	(1)	medium 1: 2.0×10^8 [m s ⁻¹] and medium 2: 2.5×10^8 [m s ⁻¹]	1			
	(ii)	Correct use of sin 30° seen clearly (1)	2			
		Rest of argument, including use of $t = \frac{d}{v}$ [ecf on v and on value of sin				
		30°, if failure to reach the stated time is noted]. (1)				
	(iii)	BD = $2.5 \times 10^8 \text{ ecf } \times 2.5 \times 10^{-11} \text{ [m]} \text{ [= 6.25 mm] or by implication (1)}$ θ_2 = 38.7° (or 39°) ecf on $v = 2.5 \times 10^8 \text{ [m s}^{-1}$] (1)	2			
	(iv)	1.50 sin 30° = 1.20 sin θ_2 (1) Therefore θ_2 = 38.7° (or 39°) no ecf (1)	2			
(b)	(i)	Use of $v = 2.0 \times 10^8 \text{ [m s}^{-1}\text{]}$ (1) $t = \frac{1600}{2.0 \times 10^8} \text{ [s] ecf on } v \text{ (1)}$	2			
	(ii)	Critical angle = 76° or by implication (1) $n_{\text{clad}} \left[\times \sin 90^{\circ} \right] = 1.500 \sin 76^{\circ} \text{ ecf on } 76^{\circ} \text{ or by implication (1)}$ $n_{\text{clad}} = 1.455 \text{ or } 1.46 \text{ do not accept } 1.45 \text{ no ecf}$ (1)	3			
	(iii)	$\frac{AC}{AB} = \cos 14^{\circ}$ or equivalent or by implication (1) $\Delta t = 0.24 \mu\text{s}$ ecf on v (1)	2			
	I					

13. (a)	(i)	Smooth curve dr	awn through a	ll the points			1
` '	(ii)	46° [or as approp		•			1
	(iii)	Reflected ray dra	•	-	equal to 🚱 by	eve.	1
	(iv)	Any of:					
		sin14°	sin 28.5°	sin 44°	sin 64°	sin 82°	
		sin 10°	sin 20°	sin 30°	sin 40°	sin 45°	
		1.39 [±0.05]√	1.40[±0.05]	1.40[±0.05]	1.40[±0.05]	1.40[±0.05]	
		or by					
		implication					2
	(v)	 Any 2 × (1) i 					
		 Strai 	_				
			ugh the origin	V			
			lient≥1 ✓				2
		II. [n is the] gra	dient				1
(b)	(i)	$1.530 \sin c = 1.5$	520 [sin 90°] (1	 [or by impl.] 			
		$c = 83^{\circ} (1)$					2
		θ = 7° [accept 6.	_				1
	(111)						
		travelling differe		-		•	
		data / pulses (1)]	_
		Less multimode	dispersion onl	y award 2 ma	ark		2
	l I						I

Que	estion		Marking details	Marks Available
4	(a)	(i)	$\sin \theta = 1.331 \sin 40.36^{\circ}$ or by implication (1) 60° (1) Accept 59.5 °	2
		(ii)	Not total + attempt at justification even if not worth next mark (1) For the 2^{nd} mark either: Light got in at P or gets out at R, so can get out at Q [as angles in water the same] or 1.331 sin 40.36 reshown to be < 1 or $C = 49^{\circ}$	2
		(iii)	$v_{\text{violet}} < v_{\text{red}}$ + attempt at justification even if not worth next mark e.g. violet bends more (1) For the 2^{nd} mark either: Violet must have larger n therefore smaller v or bending caused by light travelling more slowly in water than in air, so violet must travel most slowly.	2
	<i>(b)</i>	(i)	Speed in glass = $\frac{360}{1.75 \times 10^{-6}}$ [= 2.06 × 10 ⁸ m s ⁻¹] or by implication (1) n = 1.46 (1) must be to 3 sig figs	2
		(ii)	$C = 75^{\circ}$ or by implication (1) 1.46 sin $75^{\circ} = n_{\text{clad}} [\sin 90^{\circ}]$ [Accept 1.5 for 1.46] or by implic (1) $n_{\text{clad}} = 1.41 [1.45 \text{ if } n_{\text{core}} \text{ taken as } 1.50]$ (1) Award 1 mark only for: 1.46 sin $15^{\circ} = n_{\text{clad}} [\sin 90^{\circ}]$	3
		(iii)	Larger angles give longer propagation times. [Accept longer dists.](1) So each pulse spread out over time on arrival or each pulse is less spread out if the angles are restricted (1) So pulses might overlap (Accept pulses muddled) or overlap/muddling of pulses less likely if angles restricted. (1) Award 1 mark only for less multimode dispersion	3
			Question 4 Total	[14]