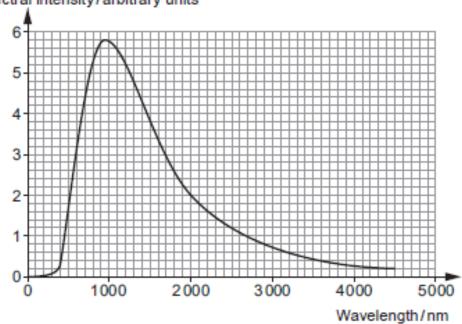
(a)	(i)	The spectrum of the star <i>Rigel</i> in the constellation <i>Orion</i> peaks at a wavelength of 260 nm. Calculate the temperature of the surface of Rigel. [2]
	(ii)	What assumption were you making about the way the star's surface radiates? [1]
(b)	Sun,	good approximation the Kelvin temperature of Rigel's surface is twice that of the and the radius of Rigel is 70 times the radius of the Sun. Use <i>Stefan's Law</i> to nate the ratio
		total power of electromagnetic radiation emitted by Rigel total power of electromagnetic radiation emitted by the Sun [3]
(c)		can discover the presence of particular atoms in the atmosphere of a star by suring the wavelengths of dark lines in the star's spectrum.
	Expl	ain how the lines arise, and why they occur at specific wavelengths. [3]

2.


4. (a) Stefan's law can be written as:

$$P = A\sigma T^4$$

Show that Stefan's constant, σ, has the base SI units of kg s ⁻³ K ⁻⁴ .	[3]

(b) Our nearest star is called Proxima Centauri. The following graph shows its spectrum.

Spectral intensity/arbitrary units

(i)	The total power output of electromagnetic radiation emitted from Proxima Centaur is 5.9×10^{23} W. Use this information and the graph opposite to calculate its effective diameter.
(ii)	State what colour you would expect Proxima Centauri to appear and name the region of the electromagnetic spectrum in which most of the star's power is radiated. [1]

3.

Read through the following article carefully.

Paragraph

A little bit of information about stars by Ignasi Lluis Marxuach

Figure 1 shows the three different routes for the life cycle of different sized stars, from small stars, through medium (Sun-like) stars to explosive high mass stars. For some reason, exam boards tend to ignore the smallest category of stars (red dwarfs) because their cores never become hot enough to produce red giant stars.

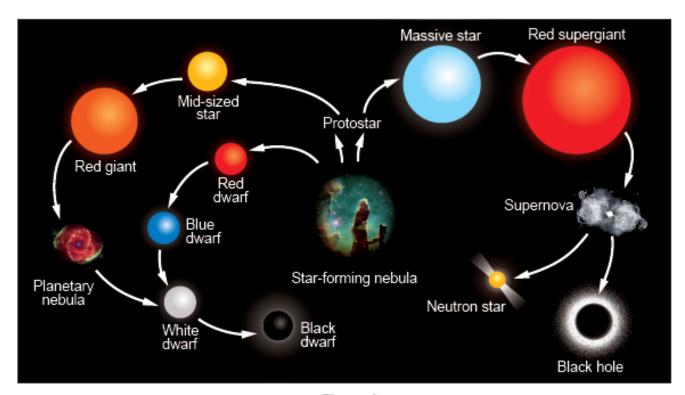


Figure 1

Stars are formed from the gravitational collapse of gas clouds called *nebulae*. Gravitational potential energy is converted to internal energy of hot gases which then emit radiation. ² This means that the search for new stars usually involves the use of infra-red telescopes in space.

The images on the next page show the same gas clouds but the image on the right (Figure 3) is taken with visible light while the image on the left (Figure 2) is taken with infra-red. Notice how the gas clouds are transparent to infra-red so that stars behind the gas clouds become visible at infra-red wavelengths. The areas where stars are forming are those areas of the gas cloud that appear to be emitting radiation at both infra-red and visible wavelengths.

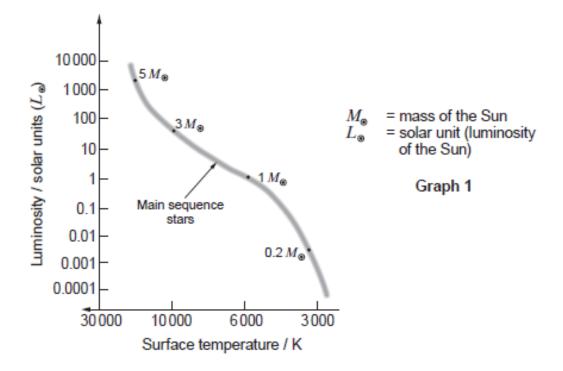


Figure 2 (infra-red image)

Figure 3 (visible light image)

Once the core of a young star is hot enough to initiate hydrogen fusion it is called a *main* sequence star. Such stars are stable, lasting for millions or billions of years and account for around 90% of all stars. They are stable because the outward pressures due to hot gases and electromagnetic radiation are balanced by the inward pressure due to gravity. Larger main sequence stars have denser cores which means that the rate of fusion and the temperature are also greater. A graph of luminosity against temperature for main sequence stars is rather useful, although slightly less useful than it should be because astronomers, apparently, don't realise that values should increase going to the right on normal graphs.

Notice that nearly all main sequence stars have surface temperatures in the range 3000 K to 20000 K. This makes them suitable for analysing using visible light.

Paragraph

Another thing to note from the luminosity against surface temperature graph is that these factors seem to depend on the mass of the star. It turns out that there is only one factor that determines a star's position on the graph – its mass. The relationship between mass and luminosity for a star is quite complicated and comes in four parts.

$L = 0.23 M^{2.3}$	for	M < 0.43	Equation 1
$L = M^4$	for 0	.43 < M < 2	Equation 2
$L = 1.5 M^{3.5}$	for	2 < M < 20	Equation 3
L = 3200M	for	M > 20	Equation 4

Note that these equations have been simplified by having the mass of the star (M) in units of the solar mass (M_{\circledast}) , and luminosity in units of the solar luminosity (L_{\circledast}) .

These relationships are rather useful and should explain why large mass stars can be found more easily using ultraviolet telescopes, but they can do so much more when combined 7 with Einstein's equation.

$$E = \Delta mc^2$$
 Equation 5

You might, in the first instance, be excused for thinking that a $10\,M_{\odot}$ star will burn 10 times longer than the Sun. This, however, could not be further from the truth. Use of Equation 3 should tell you that a $10\,M_{\odot}$ star will burn approximately 5000 times brighter. By using 8 Einstein's equation and making a few simplifying assumptions, we find the expected lifetime of a $10\,M_{\odot}$ star to be, in fact, approximately 500 times less than that of the Sun. Some might say that a large star "burns the candle at both ends" but it's more accurate to say that it burns the candle at 5000 ends simultaneously.

It should be reasonably clear that there is a negative correlation between the mass of a star and its lifetime. Another two star variables that are (bizarrely) negatively correlated are the mass of a white dwarf and its radius. However, that is a completely different story which is beyond the remit of this 2019 Space Odyssey.

[1]

Answer the following questions in your own words. Extended quotes from the original article will not be awarded marks.

(a)	Write down the complete life cycle of a mid-sized star (see Figure 1).	[1]

Starforming _____ nebula

(b)	Suggest an advantage of placing telescopes in space to observe new stars (see Paragraph 2).	[1]

(c) In Figure 2 or 3 below, mark with an X one area where new stars are forming (see Paragraph 3 and Figures 2 & 3).

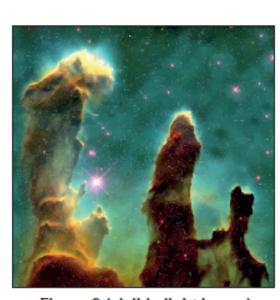
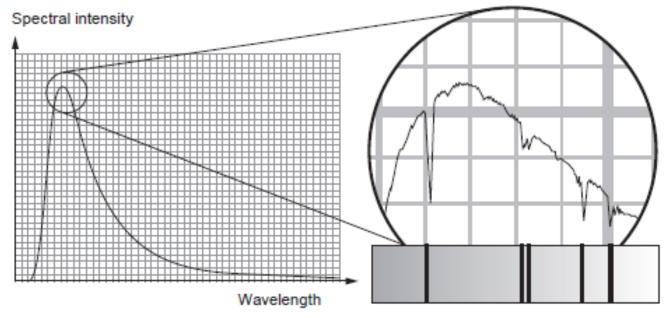


Figure 2 (infra-red image)

Figure 3 (visible light image)

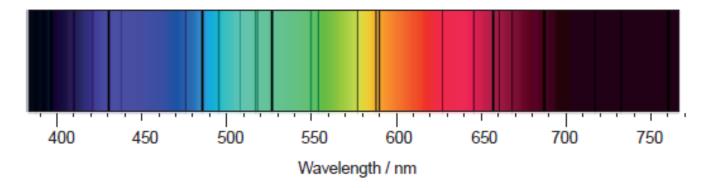

Explain, using Newton's 2 nd law, how electromagnetic radiation exerts pressure inside a main sequence star (see Paragraph 4). [3]	
(ii) Discuss whether or not it is appropriate to analyse the hottest main sequence stars using visible light when their wavelength of maximum emission is 150 nm (see Paragraph 5). [2]	
	Explain why a more massive star has a higher density in its core and why this leads to a higher temperature (see Paragraph 4). (i) Show that the wavelength of maximum emission for the hottest main sequence stars is approximately 150 nm (see Paragraph 5 or Graph 1). (ii) Discuss whether or not it is appropriate to analyse the hottest main sequence stars using visible light when their wavelength of maximum emission is 150 nm

(g)	Determine whether or not the star of mass $0.2 M_{\oplus}$ is plotted at approximately the correluminosity in Graph 1 (see Equations 1–4 and Graph 1).	ect [2]
	Explain why a 10 M, star has a lifetime that is 500 times shorter than that of the St	
(h)	Explain why a $10 M_{\odot}$ star has a lifetime that is 500 times shorter than that of the Suncluding any simplifying assumptions (see Paragraph 8 and Equations 1–5).	[4]
<i>(i)</i>	Explain briefly what the author means when he states that a white dwarf's mass a radius are negatively correlated (see Paragraph 9).	nd [1]

4.	(a)	Define a black body. [1]
	(b)	A physics student, Tony, notices that the classroom is warmer when it has a number of students in it rather than when it is empty. Tony claims that each student will behave like a perfect black body and will emit about the same amount of heat as a 200W light bulb. Assuming a typical human body has a surface area of 2 m ² . Evaluate whether or not Tony appears to be correct. Normal body temperature can be taken to be 37 °C. [3]
	(c)	(i) Some stars appear to be coloured to the naked eye. For two stars of similar diameter one appears red and the other appears blue. Sketch and label typical black body spectra for each star on the graph below. [3]
		Intensity
		Wavelength

(ii)	Suggest why it is that no stars appear to be green in colour.	2]
		·
		· • • • • • • • • • • • • • • • • • • •

6. (a) A blackbody graph of spectral intensity against wavelength for a star is shown. A magnified section, showing the finer detail of the spectrum is also given. An associated line spectrum is also shown.

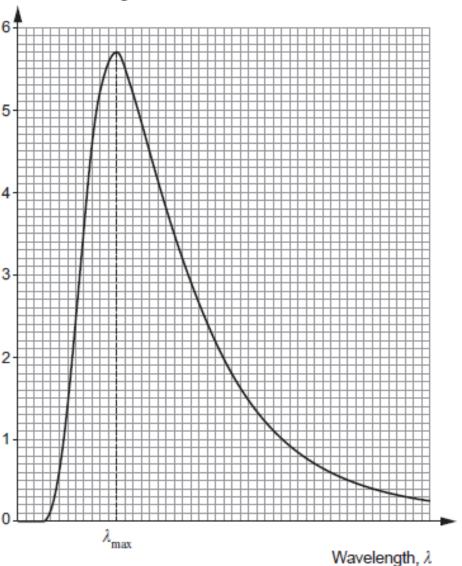


Explain how the graph and the spectra can be used to provide information about the star and the elements from which it is made. [6 QER]

(b)	(i)	Altair is the brightest star in the Aquila constellation. It is 1.58×10^{17} m away, and the intensity of its electromagnetic radiation reaching the Earth is 1.32×10^{-8} W m ⁻² . Show that its luminosity is approximately 4×10^{27} W. [3]
	(ii)	Calculate Altair's diameter given that its surface temperature is 7 700 K. [3]

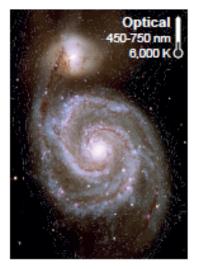
The	diagram shows three energy le	evels of a sodium atom.	
			0.0 eV
			-1.4 eV
			-3.0 eV
	Ground state		-5.1 eV
(a)	State the ionisation energy of	of a sodium atom.	[
(b)	have the continuous spectrur	m of white light but with da	. The light which emerges is found ark lines crossing the spectrum. Stapens to the atoms in the process. [

(c) (i) The spectrum of a star is shown below. The wavelength of one of the dark lines is 590 nm. Evaluate whether this is evidence for the presence of sodium in the star.
[3]

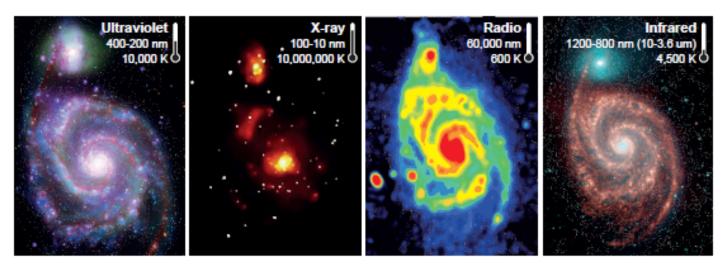


 (ii) The wavelength of peak emission of the star is 100 nm. Determine its surface temperature. [3]
.,
temperature. [3]
temperature. [3]

7.	(a)	Describe the main feat arise.	tures of the spectrum of	a star and state where in the	star they [2]
	(b)	The table gives some in	nformation about two star	·s.	
		Star	Luminosity / W	Distance from Earth / m	1
		Sirius	9.7 × 10 ²⁷	8.1 × 10 ¹⁶	1
		Vega	1.5 × 10 ²⁸	2.4 × 10 ¹⁷	1
			rth from Sirius arth from Vega	[3]	

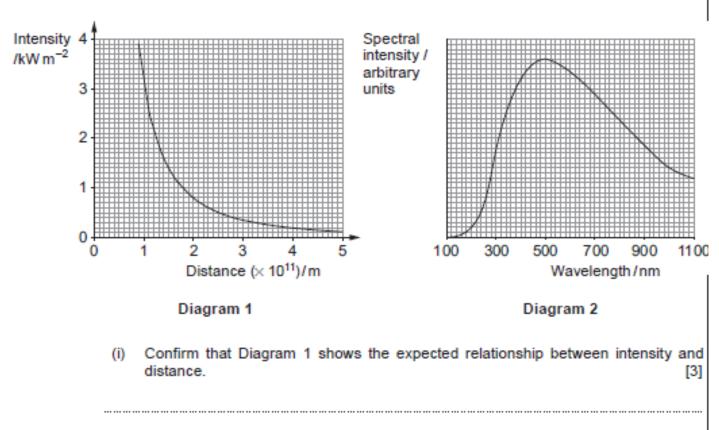

(ii) The two stars have similar surface temperatures. Below is a black body radiation curve for Sirius. Using your answer to (b)(i), sketch the expected black body curve for Vega on the same axes.
[2]

> Relative spectral intensity of radiation reaching Earth



(iii) Determine λ_{max}, given that the surface area of Sirius is 1.8 × 10¹⁹ m². [4]

(c) The image below is of the whirlpool galaxy, M51 (or NGC 5194). This is one of the first galaxies to be photographed by astronomers.

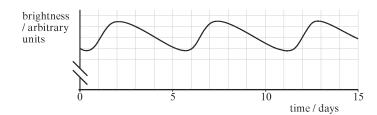

Subsequent images of the same galaxy are shown below.

[3]	of the whiripool galaxy.

Describe how these developments in observational astronomy have advanced the study

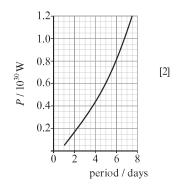
8. (a) Diagram 1 shows how the intensity of electromagnetic radiation from the Sun varies with distance from its centre. Diagram 2 shows how the intensity of the radiation incident on the Earth from the Sun is distributed across the spectrum.

(ii)		the Sun's lumin		[2]

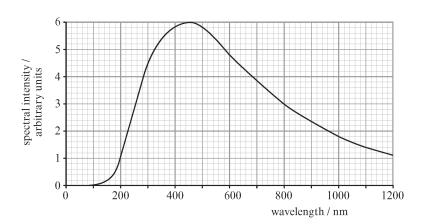

(b)	In 2006 scientists from the University of Hawaii used a solar telescope aboard NASA's Solar and Heliospheric Observatory satellite to measure the radius of the Sun with (they quote) "unprecedented accuracy". They measured it to be:
	$R_{\rm sun}$ = 696 342 km
	Use information from Diagram 2 along with your answer to (a)(ii) to evaluate whether the information from Diagrams 1 and 2 are consistent with the scientists' findings. [5]
••••••	
(c)	For centuries scientists have attempted to measure the Sun's diameter accurately. The following article is taken from a scientific paper written in 2004:
	The solar diameter, and its possible variation, have been the subject of careful measurements for over 350 years, with ever increasing accuracy. Different techniques have been used, and the instrumentation has evolved in time. However, the long-term evolution of the Sun is still a controversial subject. Even for the short term, the results are inconsistent even with the most advanced instruments presently in use. These discrepancies probably have several origins.
	[Past, present and future measurements of the solar diameter: Gerard Thuillier, Sabatino Sofia, Margit Haberreiter November 2004]
	Suggest two reasons why it has been difficult for scientists to determine an accurate value for the Sun's diameter. [2]

9.

Neutron stars are very small, dense 'dead' stars. Sometimes they can acquire an outer layer of 'active' material which becomes very hot and radiates as a *black body*. One such star has a **radius** of 11 km, and radiates at a temperature of $2.5 \times 10^7 \, \mathrm{K}$.


(a)	(i)	Show that the wavelength of greatest spectral intensity is approxima $1 \times 10^{-10}\mathrm{m}$.	tely [2]
	(ii)	Name the region of the electromagnetic spectrum in which this wavelength lie	s. [1]
	(iii)	Sketch a black body spectrum on the axes provided. spectral intensity	[1]
		$0 \boxed{0 \text{wavelength}}$	
	(iv)	Discuss briefly whether the star in question emits any visible radiation.	[1]
(b)	Calc	culate the total <i>power</i> emitted as electromagnetic radiation by the star.	[3]
(c)	The roug	outer layer of the star expands rapidly and cools. The total power emitted remarkly constant. Estimate the temperature of the outer layer when its surface area bled.	ins

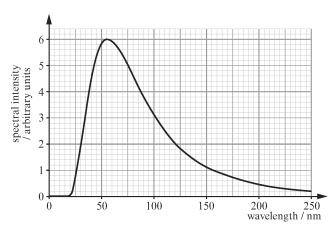
Cepheid variables are stars whose brightness varies in a characteristic, regular way. The variation is shown below for one such star.


The mean power, *P*, emitted as electromagnetic radiation from a Cepheid variable is related to the period of its brightness variation, as shown alongside.

(a) (i) Use the graphs to determine P for the star, showing briefly how you obtained your answer.

(ii) The mean *intensity* of the radiation from the star, as measured at the Earth is $8.0 \times 10^{-13} \, \mathrm{W \, m^{-2}}$. Using your answer to (a)(i), calculate the distance, r, between the star and the Earth. [2]

(b) The maximum power emitted by the star during its cycle of variation is estimated to be 9.5×10^{29} W, and the spectrum of its radiation corresponding to this point in its cycle is given below.

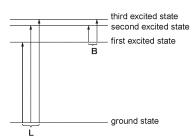


(i)	Use Wien's law to calculate the temperature of the star.	[2]
(ii)	Calculate the diameter of the star.	[4]

11.

	(i)	The spectrum of the star <i>Rigel</i> in the constellation <i>Orion</i> peaks at a wavelength 260 nm. Calculate the temperature of the surface of Rigel.	of [2]
	(ii)	What assumption were you making about the way the star's surface radiates?	[1]
	Sun,	good approximation the Kelvin temperature of Rigel's surface is twice that of and the radius of Rigel is 70 times the radius of the Sun. Use <i>Stefan's Law</i> nate the ratio	the,
		total power of electromagnetic radiation emitted by Rigel total power of electromagnetic radiation emitted by the Sun	[3]
•••		can discover the presence of particular atoms in the atmosphere of a star suring the wavelengths of dark lines in the star's spectrum.	by
•••	Expl	ain how the lines arise, and why they occur at specific wavelengths.	[3]

One of the hottest stars known is HD93129A in the Carina nebula. Its continuous spectrum is shown


- (i) Name the region of the electromagnetic spectrum in which the wavelength of peak emission lies. [1]

 (ii) Show that the star's temperature is approximately 50 000 K. [2]

 (iii) The star is blue. Explain how this could be deduced from the spectrum. [1]
- (ii) The star is 7.10×10^{19} m away, and the intensity of its electromagnetic radiation reaching the Earth is 3.33×10^{-8} W m⁻². Show that its luminosity is approximately $5 \times 10^6 P_{\rm sun}$, in which $P_{\rm sun}$ is the Sun's luminosity (3.84 × 10^{26} W). [3]

(a)	(i)	Calcul	ate t	ne st	ar's w	ave	elenç	gth o	of p	ea	k sp	ecti	al i	ntei	nsit	у.]
	(ii)	Sketch contin four la	uous	spe	ctrum	of	Siriu	ıs A	. (Not	e: n	nake	th e	nsity	a eak	gair sp	nst ect	wa ral	vele inter	ngth nsity	for t three
spectral intensity	A																		_		
iriterisity																					
	H																				
	H																				
	٥		1	Щ	Щ			Щ		Щ		ij.					Ц		۱,	-	
	0		200		40	0		60	00			800				00 wa	vele		200 th/n		
	(iii)	What	colou	ır wo	uld yo	u e	хре	ct S	iriu	ıs A	to	be?									
(b)	Use	Stefan's	s Lav	to c	alcula	ite t	he c	diam	ete	er c	of Si	rius	Α.								- 1
											•••••										

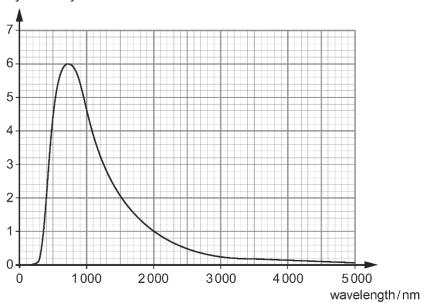
(c) The diagram shows the lowest energy levels of a hydrogen atom, and five possible transitions between these levels.

Name the process (involving photons) which is responsible for the transitions. [1]

 Briefly describe the observed feature of the spectrum of a star which this process explains. [1]

 All the transitions shown in the diagram take place in the atmosphere of Sirius A. State which group of transitions, L or B, is almost completely absent in a much cooler star, giving a reason for your answer. [2]

A website gives the following data for the star Aldebaran:

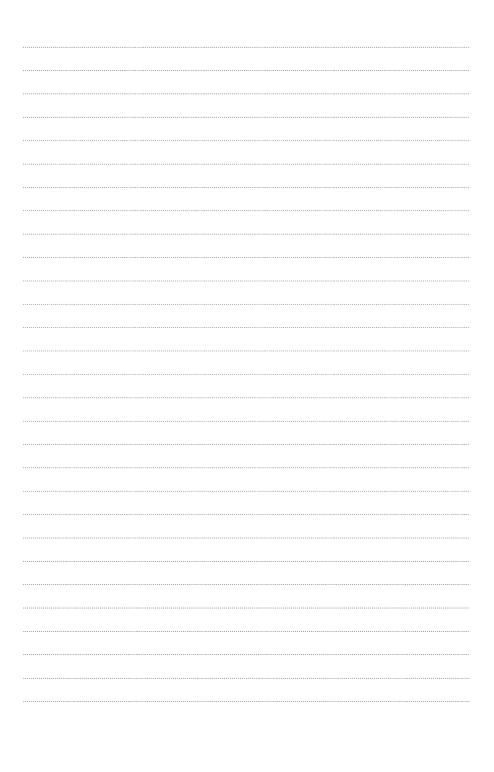

radius = 44.2
$$R_{\odot}$$
 luminosity = 518 L_{\odot}

in which $~R_\odot$ = radius of Sun = 6.96 \times 10⁸ m and $~L_\odot$ = luminosity of Sun = 3.85 \times 10²⁶ W

(a)	Use Stefan's law to calculate a value for the surface temperature of Aldebaran.	[4]
		•••••

(b) The continuous spectrum of Aldebaran is given.

spectral intensity/arbitrary units


Determine a value for the temperature of Aldebaran without using Stefan's law giving your working.

[2]

(c)	Agreement between the temperatures found in (a) and (b) would help to Aldebaran is emitting as a black body. What is a black body?	confirm that [1]
,,,,,,,,,,,		
(d)	Explain, using the data in this question, why 'red giant' is an appropriate Aldebaran.	description of [2]

(ii) The star is 4.1 × 10 ¹⁶ m from the Earth. Calculate the intensity (energy per see per m²) of electromagnetic radiation reaching the Earth from the star. (iii) Calculate the wavelength of the star's peak spectral intensity, and sketch spectrum on the axes provided. spectral intensity Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2]	(i)	Investigate whether the data abo body. Show your working clearly	we is consistent with the star radiating as a by, and give your conclusion.
(iii) Calculate the wavelength of the star's peak spectral intensity, and sketch spectrum on the axes provided. spectral intensity 3. Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2]			
(iii) Calculate the wavelength of the star's peak spectral intensity, and sketch spectrum on the axes provided. spectral intensity 3. Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2]			
(iii) Calculate the wavelength of the star's peak spectral intensity, and sketch spectrum on the axes provided. spectral intensity 3. Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2]	•••••		
spectrum on the axes provided. spectral intensity Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2] LOW 20 10 5 500 1000 1500 2 wavelength /	(ii)	The star is 4.1×10^{16} m from the per m ²) of electromagnetic radia	Earth. Calculate the intensity (energy per se tion reaching the Earth from the star.
spectrum on the axes provided. spectral intensity Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2]			
spectrum on the axes provided. spectral intensity spectral intensity Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2] LOW 20 10 5 5 2			
Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2] HOTTER COOLER HIGH LOW 20 10 500 1000 1500 2 wavelength /	(iii)	Calculate the wavelength of the spectrum on the axes provided.	e star's peak spectral intensity, and sketch
Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2] LOW 1500 1000 1500 2 Wavelength /	•••••		
Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2] LOW HOTTER COOLER HIGH LOW LOW			
Astronomers assign to each star a position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2] LOW wavelength /			spectral
position on a chart, according to the star's luminosity and temperature. During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2] LOW 1 HIGH LOTTER COOLER LOW	*********		spectral intensity
During one stage in the life of Alpha Centauri A, its position on the chart will move as shown by the dotted line. Use Stefan's law to show clearly what happens to the size of the star during this stage. [Numerical calculations are not needed.] [2] LOW	•••••		spectral intensity
calculations are not needed.] [2] LOW 20 10 5 2		stronomers assign to each star a	spectral intensity 0 500 1000 1500 wavelength HOTTER COOLER
calculations are not needed.] [2] LOW 20 10 5 2	b) As posts	stronomers assign to each star a sition on a chart, according to the ar's luminosity and temperature.	spectral intensity 0 500 1000 1500 wavelength HOTTER COOLER
calculations are not needed.] [2] LOW 20 10 5	b) As po sta	stronomers assign to each star a sition on a chart, according to the ar's luminosity and temperature. uring one stage in the life of Alpha entauri A, its position on the chart ill move as shown by the dotted	spectral intensity 0 500 1000 1500 wavelength HOTTER COOLER
	b) As po sta Di Ca wi lin Us wi	stronomers assign to each star a sition on a chart, according to the ar's luminosity and temperature. uring one stage in the life of Alpha entauri A, its position on the chart ill move as shown by the dotted he. se Stefan's law to show clearly that happens to the size of the	spectral intensity 0 500 1000 1500 wavelength HOTTER COOLER
	Di Ce wi lin Us wi	stronomers assign to each star a sition on a chart, according to the ar's luminosity and temperature. uring one stage in the life of Alpha entauri A, its position on the chart ill move as shown by the dotted he. se Stefan's law to show clearly nat happens to the size of the ar during this stage. [Numerical]	spectral intensity (radiated power) HOTTER COOLER HIGH Application of the content of the con
	b) As po sta	stronomers assign to each star a sition on a chart, according to the ar's luminosity and temperature. uring one stage in the life of Alpha entauri A, its position on the chart ill move as shown by the dotted he. se Stefan's law to show clearly nat happens to the size of the ar during this stage. [Numerical]	spectral intensity (radiated power) HOTTER COOLER HIGH Application of the property of the

