Maximum k.e. of emitted / photo electrons 1 Energy of a photon[s] (ii) 1 [Minimum] energy needed to remove electron [from surface]. Don't (iii) 1 accept from an atom **(b)** (i) I. Gradient calculation attempted (1) - no penalty for wrong powers of 6.6 [± 0.3] x10⁻³⁴ [J s] (1) 2 agreeing with working II. $f_{\text{thresh}} = 4.4 \times 10^{14} \text{ Hz}$ (1) [± 0.1×10¹⁴ Hz] or valid algebraic method $\phi = 2.9 \times 10^{-19} \text{ J UNIT (1)}$ ecf 2 (ii) L K.E.mor / 10-19 J frequency / 1014 Hz 2 Correct point (1), parallel line (1) 1 [or UV] Ш Ultraviolet Lithium has higher work function / needs more energy to remove Ш 1 an electron

(i)
$$[\pi \times 22^2](1) [\text{accept } \pi r^2] \times 14 (1) [=21287 \text{ m}^3 \text{ s}^{-1}]$$
 2

(ii) mass every second = 1.2 × 21000 [or as calculated in (i)] $[=25\ 200] \text{ kg s}^{-1}$ 1

(iii) Initial $E_{k1} = \frac{1}{2} \times 25\ 200 \times 14^2$ (1) e.c.f. from (ii) Final $E_{k2} = \frac{1}{2} \times 25\ 200 \times 14^2$ (1) e.c.f. from (ii) $\Delta E_k = 945 \times 10^3 \text{ J s}^{-1}$ (1) e.c.f. from E_{k1} and E_{k2} NB. "Solutions" based upon $\frac{1}{2} m \times (14 - 11)^2 \rightarrow 0$ 3

(iv) Useful power available = 614 250 J s⁻¹ (1) e.c.f. from (iii) $N_{\text{turbines}} = \frac{1000 \times 10^6}{614250} [=1628]$ (1) 2

Marks **Ouestion** Marking details Available (a) Any $4 \times (1)$ from: light [energy] in discrete packets one electron ejected by one photon OR photons don't coenergy not accumulated [by electron] over time or emission from instant light shines intensity has no effect on $E_{k\text{max}}$ or accept intensity affects number emitted per second wave theory doesn't predict Einstein's equation or doesn't predict threshold frequency [4] $E_{k\text{max}} = (6.63 \times 10^{-34} \times 8.7 \times 10^{14} - 3.8 \times 10^{-19})$ (1) *(b)* [2] $E_{k\text{max}} = 1.97 \times 10^{-19} \text{ [J] (1)}$ These photons eject electrons with smaller $E_{k\text{max}}(1)$ $E_{k\text{max}}$ same as previously with some explanation given (1) [2] Correct use of $c = f\lambda$ (1) e.g. to give $\lambda_{\text{thresh}} = 523 \text{ [nm]}$ OR $f_{400 \text{ nm}} = 7.5 \times 10^{14} \text{ [Hz] OR } f_{700 \text{ nm}} = 4.3 \times 10^{14} \text{ [Hz]}$ Comparison of 400 [nm] with $\lambda_{\text{thresh}}(1)$ or 7.5 x 10^{14} [Hz] with f_{thresh} [3] $(5.73 \times 10^{14} \text{ [Hz]})$ or substitution of 7.5 x 10^{14} [Hz] into Einstein's Conclusion: It can (1) [if reasoned] **Question 4 Total** [11]

3.

4. (a)		Electrons are emitted [from tin] (1). Electrons are negatively charged [or plate originally neutral] or electrons knocked out by photons (1) Plate left with a positive charge (1)	3
(b)		Work function: [Minimum] energy [or work] needed for an electron to escape [from metal surface] $hf_{\min} = \phi$ [or by impl.] or $0 = 6.63 \times 10^{-34} f_{\min} - 7.1 \times 10^{-19}$ (1)	1
		$f_{\min} = 1.07 \times 10^{15} \mathrm{Hz} (1)$	2
	(111)	$1.5 \times 10^{-19} = hf - 7.1 \times 10^{-19}$ [or equiv. or by impl.] (1) $f = 1.3 \times 10^{15}$ Hz (1)	2
(c)	(i)	number per second = $\frac{0.64 \times 10^{-6} [C \text{ s}^{-1}]}{1.6 \times 10^{-19} [C]}$	1
	(ii)	Multiplication by 1200 at any stage [or by impl.](1) Photon energy = 8.6×10^{-19} J [or by impl.] (1)	
		UV energy per second = $4.1 \text{ m}(1)\text{W}(1) [4.1 \times 10^{-3} \text{ J s}^{-1} \checkmark \checkmark]$	4
			[13]
5. (a)		$f_{\text{Thresh}} = \frac{\phi}{h} (1) \text{ [or by imp1.]} = 5.1[3] \times 10^{14} \text{ [Hz] (1)}$	2
(b)	(i)	Photon $E = 6.63 \times 10^{-34} \times 7.4 \times 10^{14}$ [= 4.91×10^{-19} J][or by impl.](1) $E_{k \max}$ [= $4.91 \times 10^{-19} - 3.4 \times 10^{-19}$] = 1.5×10^{-19} [J] (1)	,
	(ii)	[A single] photon gives its energy to an electron (1)	
		Some of the energy used to escape from the metal (1).	2
(c)	(i)	Points plotted at (5.1 × 10 ¹⁴ Hz, 0) and (7.4 × 10 ¹⁴ Hz, 1.5 × 10 ⁻¹⁹ J) (1) Allow e.c.f. from (a) and (b)(i)	
		Straight line drawn through points (1) (One correct point only and a positive slope line = 1 mark)	2
	(ii)	h / the Planck constant	1
	(iii)	Straight line drawn with same gradient as (i) and to the right	1

6. (a)		[Minimum] energy needed to release [or eject] electron from magnesium [or metal or surface or solid not atom]	1
(b)		$E_{k \max} = 6.63 \times 10^{-34} \times 1.16 \times 10^{15} [\text{J}] - 5.9 \times 10^{-19} [\text{J}] (1)$ $E_{k \max} = 1.79 \times 10^{-19} [\text{J}] (1)$	2
(c)		Photon energy < work function (1) don't accept photon energy in symbols. Accept not enough energy to liberate an electron. Don't accept $E_{k \max}$ can't be negative. $E_{\text{phot}} = 5.4 \times 10^{-19} [\text{ J}] \text{ accept } f_{\text{thresh}} = 8.9 \times 10^{14} [\text{Hz}] \text{ (1)}$ If negative energy award 1 mark only	2
(d)	(i)	Planck constant. Accept Planck's constant or h.	1
	(ii)	[-] work function. Accept [-] ϕ .	1
	(iii)	f_0 or minimum frequency to eject electron or threshold frequency	1

_			Marking date in		Marks a	vailable			
(Questi	on	Marking details	A01	AO2	AO3	Total	Maths	Prac
3	(a)		Photons have enough energy [or frequency or hf high enough] (1) to emit / release electrons (from metal surface) (1) These arrive at the anode / [collecting] (& give current) (1)	1	1		3		3
	(b)		Applying Einstein's equation i.e. $2.7 + 1.2 = 3.9 \text{ eV}$ (1) Converting to J i.e. $\times 1.6 \times 10^{-19}$ (1) Answer = 9.4×10^{14} Hz (1) N.B. 5.9×10^{33} Hz $\rightarrow 1$ mark only	1	1		3	2	
	(c)	(i)	Reverse polarity of supply [or equivalent, e.g. make collecting electrode negative / reversing the photocell] (1) [Increase pd] until current is [just] zero (1) Record the pd (from voltmeter) [or this is the stopping potential] (1)		3		3		3
		(ii)	(Alpha particles +ve so) opposite current (1) Current zero at smaller pd (1) More accurate if light intensity large (accept any insightful comment e.g. obtain activity and compensate / measure the dark current) [Accept - wait for activity to decrease] (1)			3	3		3
			Question 3 total	3	6	3	12	2	9

Question				Marking details	Marks Available
5	(a)	(i)		[Maximum] kinetic energy of emitted electron[s]	1
		(ii)		Photon energy	1
		(iii)		[Minimum] energy needed to release [or eject] electron from surface [or metal or solid]	1
	(b)			$ \phi = hf_0 \text{ or by implication (1)} f = 3 f_0 (1) $	2
	(c)	(i)	I	attempt at gradient calculation even if slips, e.g. in 10^{n} (1) $h = 6.8 \pm 0.2 \times 10^{-34} $ [J s] (1)	2
			п	$\phi = 3.1 \ [\pm 0.1] \times 10^{-19} \ [J]$ Don't accept a negative ϕ	1
		(ii)		$\phi_{\text{sodium}} = \phi_{\text{caesium}} + 0.6 \text{ [or } 0.7] \times 10^{-19} \text{ J or parallel line or use of}$	
				equation (1) $\phi_{\text{sodium}} = 3.7 \ [\pm 0.3] \times 10^{-19} \ [\text{J}] \ \text{ecf} \ (1)$	2
				Question 5 Total	[10]

 ϕ is [minimum] energy needed to release an electron from surface [or [3] from metal or from material]. (1) No marks for giving meaning of f_0 . So [minimum] photon energy needed is ϕ . (1) So $hf_0 = \phi$ or $\hat{E}_{photon} = hf(1)$ (ii) Award 2 x (1) of: · More photons per second · Individual photon energies unchanged E_{kmax} depends on energy of individual photon or E_{kmax} = hf - φ does 2 not include intensity. Accept: Photons don't co-operate [in releasing electrons]. Increase / adjust pd until nano-ammeter shows zero current [or **(b)** equiv.] (1) Read voltmeter (1) or by implication [3] $E_{kmax} = eV$ (1) (i) Gradient = 6.7 [± 0.2] x 10⁻³⁴ [J s] (1) (c)Mention of Planck's constant and sensible comparison (1) [2] $\phi = 4.1 \, [\pm 0.2] \times 10^{-19} \, [J] \, (1)$ barium but only award mark if some reasoning given e.g. correct reference to intercept (1) 2

	Question			Marking dataila			Marks av	vailable		
_			′	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)			energy needed (1) to remove an electron from a surface(1)	2			2		
	(b)	(i)		Energy of one photon = 4.8×10^{-19} [J] (1) Number of photons = 5.2×10^{8} (1)		2		2	2	
		(ii)	1	Threshold frequency = 4.4×10^{14} [Hz] (1) Work function = hf_0 = 2.9×10^{-19} [J] (1)		2		2	2	
			II	Line drawn with intercept greater than 4.4 × 10 ¹⁴ Hz (1) Line has same gradient (1)		2		2	1	
			III	Photon energy would stay the same (1) Same surface or work function would stay the same (1)		2		2		
				Question 7 total	2	8	0	10	5	0

Qui	estio	n	Marking details		Marks available AO1 AO2 AO3 Total Maths Pra					
					AO2	AO3	Total	Maths	Prac	
	(4)	(1)	0.23 and 0.14 [1]			2	2	2	2	
		(ii)	3.50 2.50 2.00 1.50 1.00 0.00 0.00E+005.00E+051.00E+061.50E+062.00E+062.50E+06 Both points correct ± ½ small square division [1]		2		2	2	2	
		(iii)	Both error bars correct [1] Line of maximum gradient correct [1]							
			Line of minimum gradient correct [1] Allow ecf on plots and error bars for 1 mark only if imperfect		2		2		2	
	(b)	(i)	Correct gradients (expect 1.73×10^{-6} , 0.98×10^{-6} but allow ecf on lines, just check for consistency) [2] Correct value of h obtained expect 7.2×10^{-34} [Js] (regardless of method, allow ecf but check consistent with lines) [1] Correct % uncertainty (expect around 27%) or $2 \times$ correct values of h obtained e.g. 9.1 and 5.3 [1] (just check that these are consistent with the drawn lines) Final expression consistent with sig figs only 1 or 2 sig figs for uncertainty (allow ecf) e.g. $(7.2 \pm 1.9) \times 10^{-34}$ [J s], $(7.2 \pm 1.8) \times 10^{-34}$ [J s], $(7.2 \pm 2.0) \times 10^{-34}$ [J s], $(7 \pm 2) \times 10^{-34}$ [J s] [1]			5	5	4	5	
	(c)	(ii)	Any 4 × (1) from: • Straight line ✓ • Through all error bars ✓ • Straddles origin / best fit line goes through origin ✓ • Value of h consistent (with data booklet) / gradient = hc e accept h is slightly large ✓ • Large uncertainty or scatter in data ✓ Eye sensitivity changes with wavelength or long/some			4	4	4	4	
	. /		wavelengths invisible Don't accept reference to human error			1	1			
	(d)	(i)	Method correct (obtaining gradient or substituting values) e.g. $\frac{6.6 \times 10^{-19}}{10 \times 10^{14}} \text{ or } h \times 10 \times 10^{14} = 4.6 \times 10^{-19} + 2 \times 10^{-19} \text{ [1]}$ $h = 6.6 \times 10^{-34} \text{ [Js] or other consistent value [1]}$		2		2	2	2	
		(ii)	$h \times 6.9 \times 10^{14} = 4.57 \times 10^{-19} \text{ J OR } y\text{-intercept} = 4.6 \times 10^{-19} \text{ J [1]}$ Photon energy is too low [1] to release electrons [1]	1	1		3	1	3	
			Question 7 total	2	7	12	21	15	21	

	Questi		Marking details		Marks a	vailable			
	Question		marking details		AO2	AO3	Total	Maths	Prac
3	(a)	(i)	The emission of electrons from a surface due to light or em rad ⁿ	1			1		
		(ii)	Energy of light is in the form of photons/packets of energy = hf (1) The work function ϕ is needed for the electron to escape (1) $E_{k \max}$ is the energy remaining for the electron (1)	3			3		
	(b)		Polarity is incorrect/All the electrons will reach collecting electrode (1) No ammeter in circuit (1) Voltmeter not connected correctly (1) No variable supply (1)			4	4		4
	(c)	(i)	Axis labelled correctly with units and suitable scale so that data points occupy half of the axis (1) All points plotted correctly to within ±½ small square division (1) Good line of fit consistent with data (1)		3		3	3	3
		(ii)	Straight line graph of positive gradient (1) Passes close to all data points (1) Cannot determine if passes through origin (allow ecf) does not pass through origin/clear negative y intercept (must be consistent with graph)' (1)			3	3	1	3
		(iii)	Planck constant = gradient (implied) (1) Large triangle used [or 2 equivalent suitable points clearly indicated on the graph] and correct values for gradient calculation (1) Gradient calculated correctly and Planck constant = 6.6 (± 0.2) × 10 ⁻³⁴ (Js) (1)		3		3	2	2
		(iv)	5% of Planck constant (6.63 × 10 ⁻³⁴ Js) determined (± 0.33 × 10 ⁻³⁴) (1) Valid conclusion e.g. value obtained is within 5% (1)		1	1	2		
			Question 3 total	4	7	8	19	7	14

	٥	estion	Madia - dataila		Marks a	vailable			
	Qu	estion	Marking details	A01	AO2	AO3	Total	Maths	Prac
8	(a)	(i)	No emission if photon energy $< \phi$ [or emission only if photon energy $> \phi$](1) Convincing argument, clearly implying that photon energy = hf						
			and leading to no emission if $f<\frac{\varphi}{h}(1)$ Increasing light intensity just gives more photons or doesn't change [energy of] individual photons or doesn't help because photons don't co-operate (1)	3			3		
		(ii)	Photon energy = 4.37×10^{-19} [J] (1) No emission by Ca or Zn (or equiv) (1) $KE_{\max} < 0.56 \times 10^{-19}$ J or $\phi > 3.81 \times 10^{-19}$ J or equivalent, e.g. V_3 = 0.78 V (Cs), 0.43 V (K), 0.21 V (Ba) (1) Therefore Ba (1) [award mark only if attempted justification] See below:			4	4	2	
	(b)	(i)	Acceptable straight line through points (going through origin would be unacceptable)		1		1	1	1
		(ii)	Straight line as predicted (1) But not through origin (or non-zero intercept). Equation predicts through origin (or proportionality) (1)			2	2	1	2
		(iii)	Data from graph put into $\frac{\Delta V}{\Delta f}$ irrespective of slips such as incorrect powers of 10 (1) Accept between 3.90 × 10 ⁻¹⁵ and 4.40 × 10 ⁻¹⁵ [V Hz ⁻¹] and to either 2 or 3 sig figs (1) $h = 6.64 \times 10^{-34}$ Js ecf from gradient (1)			3	3	2	3
			Question 8 total	3	1	9	13	6	6

Additional marking guidance for 8(a)(ii)

Method 1 $hf = 4.37 \times 10^{-19} \text{ J}$ For Barium	$hf - \phi = 0.34 \times 10^{-19} \text{ J}$ $V_{\text{stop}} = 0.21 \text{ V}$	(1) (1) (1) (1)
Method 2 $hf = 4.37 \times 10^{-19} \text{ J}$		(1)

$$h\phi < 4.37 \times 10^{-19} \, \mathrm{J}$$
 or not Ca or Zn (1)
For potassium, Either $hf - \phi = 0.69 \times 10^{-19} \, \mathrm{J}$ or $V_{\text{stop}} = 0.43 \, \mathrm{V}$ (1)
Therefore barium (1)

Method 3

Method 3

$$hf = 4.37 \times 10^{-19}$$
 J (1)
 $hφ < 4.37 \times 10^{-19}$ J or not Ca or Zn (1)
 $E_k < 0.56 \times 10^{-19}$ J or $φ > 3.81 \times 10^{-19}$ J (1)
[Don't penalise $E_k = 0.56 \times 10^{-19}$ J or $φ = 3.81 \times 10^{-19}$ if seen]
Therefore barium (1)

4	4
1	4.

Question			Marking details	Marks available					
"	, uesuc		marking details	A01	AO2	AO3	Total	Maths	Prac
5.	(a)		[Minimum] energy needed to remove an electron [from the surface or from the metal] Don't accept reference to atoms or ionisation	1			1		
	(b)		Photon energy needed = $3.2 \times 10^{-19} \mathrm{J} + 1.5 \times 10^{-19} \mathrm{J}$ [= $4.7 \times 10^{-19} \mathrm{J}$] or substitution of data into $E_{k\mathrm{max}} = hf - \phi$ or by implication (1) $f = 7.1 \times 10^{14} \mathrm{[Hz]}$ (1)		2		2	2	
	(c)	(i)	Photons per second = $\frac{0.3 \text{ [W]}}{4.7 \times 10^{-19} \text{ [J]ecf}}$ (1) = $6.4 \times 10^{17} \text{ [s}^{-1]} \text{ Accept } 6.5 \times 10^{17} \text{ [s}^{-1]}$ (1)		2		2	2	
		(ii)	Number of electrons per second = $\frac{0.8 \times 10^4 \text{ [A]}}{1.6 \times 10^{-19} \text{ [C]}}$ or by implication Accept slips of powers of 10 (1) = $5.0 \times 10^{12} \text{ [s}^{-1]}$ (1) Assumes all emitted electrons captured [or equivalent] (1)		3		3	2	
		(iii)	7.8×10^{-6} [or 7.8×10^{-4} %] ecf on (c)(i) and (c)(ii) or 8.3×10^{-6} [or 8.3×10^{-4} %] if 6×10^{17} used, ecf on (c)(ii)		1		1	1	
			Question 5 total	1	8	0	9	7	0