
(a) State, in terms of energy, the meaning of each term in Einstein's photoelectric equation

$$E_{k\max} = hf - \phi.$$

- (ii) hf [1]

(b) Monochromatic light of frequency $7.40 \times 10^{14}\,\mathrm{Hz}$ is shone on to a caesium surface, and $E_{k\mathrm{max}}$ is measured. The procedure is repeated for three other frequencies, enabling four points to be plotted on the grid below.

(i) Showing your working, determine from the grid above

(I	a value for the Planck constant,	[2]
(III)	the work function of caesium.	[2]

- (ii) When a lithium surface is used instead of a caesium surface, $E_{k\rm max}$ is found to be $0.40\times 10^{-19}\,{\rm J}$ for light of frequency $7.40\times 10^{14}\,{\rm Hz}$.
 - (I) Draw the expected line of $E_{k\text{max}}$ against frequency on the same grid. [2]
 - (II) This line cannot be checked satisfactorily by experiment using visible light.

 Name the region of the electromagnetic spectrum which is required. [1]

(III) What is different about lithium, as compared to caesium, which makes it necessary to use this region of the electromagnetic spectrum? [1]

	Defi	ne the work function of a metal surface.	[1]
	Γhe ind	work function of sodium is $3.8 \times 10^{-19} \text{J}$. Use Einstein's photoelectric equation	n to
	(i)	the lowest frequency of light which will eject electrons from a sodium surface,	[2]
((ii)	the maximum kinetic energy of electrons emitted from a sodium surface v light of frequency $7.0\times10^{14}\mathrm{Hz}$ is shone on to the surface.	when [2]
	(i)	The answer to (b) (ii) is unaffected if the <i>intensity</i> of light is increased. Explait terms of <i>photons</i> , why this should be the case.	n, in [2]
((ii)	What aspect of photo-electric emission is affected by the light intensity?	[1]
T	Гhe Desc	diagram shows apparatus set up to check experimentally the answer to (b) (ii) cribe how you would make this check.). [
		\sim light of frequency	

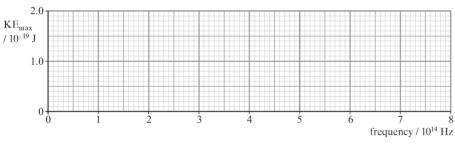
(a)	Hei effe	re is a summary of a theory (now considered incorrect) to account for the photoelectric ect:
	s i	The electrons in a surface gradually gain energy from light waves falling on the surface. After a time they will have gained enough energy to escape. The greater the intensity of the light waves the greater the maximum kinetic energy of the emitted electrons."
		te some ways in which Einstein's explanation (in terms of photons) of the photoelectric ext differs from the theory above. [4]

(b)	The	e work function of sodium is 3.8×10^{-19} J.
	(i)	Calculate the maximum kinetic energy of electrons emitted from a sodium surface irradiated with ultraviolet radiation of frequency $8.7 \times 10^{14} \mathrm{Hz}$. [2]
	(ii)	Discuss whether or not this maximum kinetic energy would change if the surface were also irradiated at the same time with radiation of frequency 8.5×10^{14} Hz. [2]
Œ	iii)	Determine whether or not visible light can cause the emission of electrons from a sodium surface, giving your reasoning and conclusion. Take the range of visible wavelengths to be 400 nm to 700 nm. [3]
	••••••	

(a)	insu	en ultraviolet radiation of high enough frequency falls on a tin plate (held by an lating support) the plate acquires a charge. Explain, in terms of electrons and tons, why this happens, and whether the charge is positive or negative. [3]
(b)		work function of tin is 7.1×10^{-19} J. What is meant by the work function of a metal? [1]
		[-]
	(ii)	Calculate the minimum frequency of ultraviolet radiation needed for photoelectric emission from tin. [2]
	(iii)	Calculate the frequency of ultraviolet radiation needed for the emitted electrons to have a maximum kinetic energy of 1.5×10^{-19} J. [2]
(c)	all the	ne set-up shown, assume that ne electrons emitted from the surface are collected by the rode C, and returned via the co-ammeter and power supply. C ultraviolet radiation of frequency 1.3 × 10 ¹⁵ Hz tin surface power supply A micro-ammeter
	(i)	The micro-ammeter reads 0.64 μA (0.64 \times 10 ⁻⁶ coulombs per second). Show that 4.0×10^{12} electrons are emitted per second.
	(ii)	Only 1 in 1200 of the incident photons causes emission of an electron. By considering the energy of an individual photon, calculate the ultraviolet energy per second falling on the tin surface. [4]

4	(a)	The work	function	of caesium	is 3.4×10^{-19}	т (
4.	(u)	I HE WOLK	nunction	or caesium	18 5.4 ^ 10	J.

cuestum suruce.

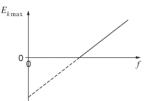

Calculate the lowest frequency of light that will cause photo-electric emission from a

(b) Light of frequency 7.4×10^{14} Hz is shone on to a caesium surface.

(i) Calculate the maximum kinetic energy, $K{\rm E}_{max},$ of the emitted electrons for this frequency of light. [2]

(ii) Explain **in physical terms** why KE_{max} is less than the energy of an incident photon. [2]

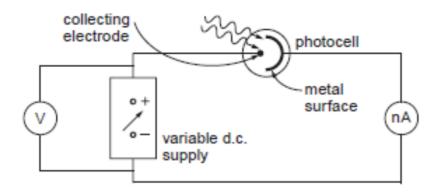
(c) (i) Making use of your answers to (a) and (b)(i), draw a graph, on the axes provided, to show how KE_{max} would depend on the frequency of incident light. [2]


(ii) What does the gradient of this graph represent?

[1]

(iii) On the same axes sketch a graph that could be obtained for a metal with a greater work function than caesium. Label this graph '(iii)'. [1]

5.	(a)	Magnesium has a work function of 5.9×10^{-19} J. What does this statement mean? [1]
	(b)	Calculate the maximum kinetic energy of electrons ejected from a magnesium surface by ultraviolet radiation of frequency 1.16×10^{15} Hz. [2]
	(c)	Explain in physical terms why electrons are not emitted when radiation of frequency $8.21\times10^{14} Hz$ (instead of the original frequency) falls on a magnesium surface. Support your answer with a calculation. [2]


(d) The graph shows how the maximum kinetic energy, $E_{k\max}$ of electrons ejected from a magnesium surface varies with the frequency, f, of ultraviolet radiation falling on the surface.

State the physical quantities represented by:

(i)	the gradient;	[1]
(ii)	the intercept on the $E_{k_{ m max}}$ axis;	[1]
(iii)	the intercept on the f axis.	[1]

7. 3. Light is incident on a photoelectric cell as shown.

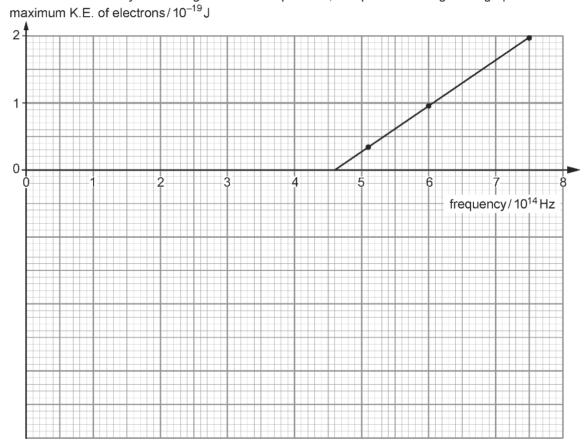
	Explain why a current is detected by the ammeter.	[3]
(b)	The work function of the metal surface is 2.7 eV and electrons are emitted with a maxim kinetic energy of 1.2 eV.	num
	Calculate the frequency of the incident photons.	[3]

(c)	(i)	Explain how you would modify and use the circuit opposite to measure the stopping potential. [3]
	(ii)	The metal surface of the photocell is radioactive and emits alpha particles some of which arrive at the collecting electrode. Explain briefly what effect this would have on measuring the stopping potential and what could be done to reduce this effect. [3]

(a) Einstein's photoelectric equation is $E_{k \max} = hf - \phi$

State, in terms of energy, the meaning of each term in the equation.

(i)	$E_{k\mathrm{max}}$	
	n max	[1]

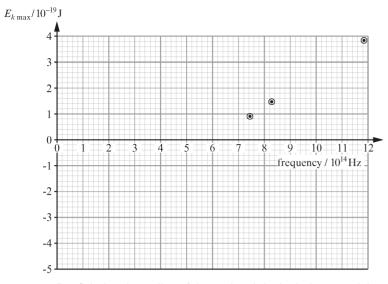

(ii)	hf	r 	
		[1]

(iii)
$$\phi$$

[1]

(b) The minimum frequency of radiation which will eject electrons from a surface is f_0 . Determine, as a multiple of f_0 , the frequency of radiation which will eject electrons with maximum kinetic energy 2ϕ from the same surface. [2]

(c) A student determines the maximum kinetic energy of electrons ejected from a caesium surface by incident light of three frequencies, and plots the straight line graph shown.



	(I) the Planck constant;			
	********		•••••	
	(II)	the work function of caesium.	[1]	
(ii)		student starts to repeat the process for a sodium surface, but runs out of obtaining data for one graph point:	time	
		$f = 6.0 \times 10^{14} \text{Hz}, E_{k \text{max}} = 0.32 \times 10^{-19} \text{J}$		
	Obta	in a value for the work function of sodium, showing your reasoning.	[2]	
**********	**********			

*********	***********			

Determine from the graph values for:

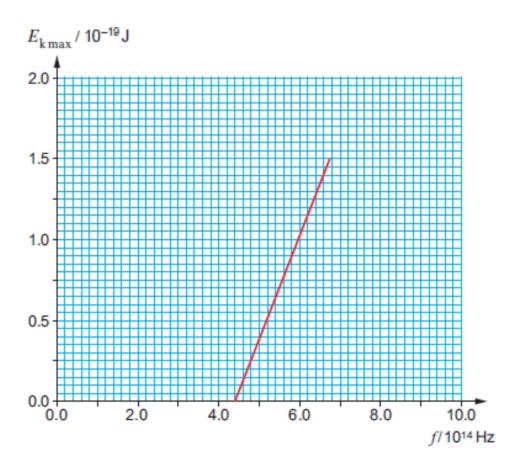
(i)	$f_0 = \frac{\phi}{h}$. Explain, in terms of energy, why this is so.
	n
(ii)	Explain why increasing the <i>intensity</i> of light will not increase the maximum kine energy, $E_{k \text{ max}}$, of the emitted electrons.
	$E_{K} = E_{K} = E_{K}$
Mor	nochromatic light is shone on to a metal surface in a photocell connected as show
Mor	
Mor	nochromatic light is shone on to a metal surface in a photocell connected as show cribe how you would find the maximum kinetic energy of the emitted electrons.
Mor	nochromatic light is shone on to a metal surface in a photocell connected as show cribe how you would find the maximum kinetic energy of the emitted electrons.
Mor	nochromatic light is shone on to a metal surface in a photocell connected as show cribe how you would find the maximum kinetic energy of the emitted electrons.
Mor	variable variable is shone on to a metal surface in a photocell connected as show cribe how you would find the maximum kinetic energy of the emitted electrons.
Mor	nochromatic light is shone on to a metal surface in a photocell connected as show cribe how you would find the maximum kinetic energy of the emitted electrons.
Mor	vacuum variable

(c) The experiment is carried out, using three known frequencies of light in succession, giving the points plotted on the grid.

- (i) Calculate the gradient of the graph and check whether or not it has the expected value, giving your working and conclusion clearly. [2]
- (ii) The metal with the exposed surface in the photocell is known to be one of the five metals whose work functions are listed.

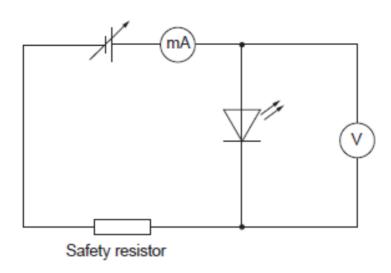
metal	caesium	potassium	sodium	barium	calcium
$\phi/10^{-19} \mathrm{J}$	3.12	3.68	3.78	4.03	4.59

Use the graph to determine which of these metals is in the photocell, giving your reasoning. [2]


7. Einstein's photoelectric equation can be written as

$$E_{k \max} = hf - \phi$$

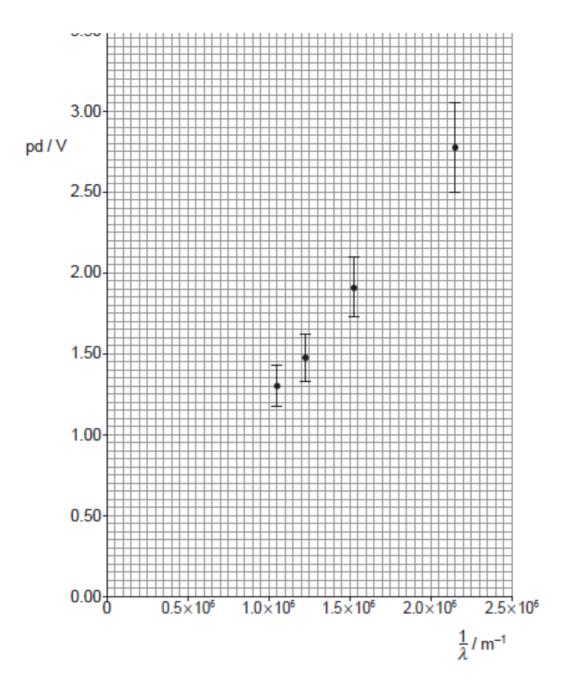
(a)	Expl	lain what is meant by the term work function, ϕ .	[2]
• • • • • • •			
	• • • • • • • • • • • • • • • • • • • •		
(b)	(i)	Light of frequency 7.3 × 10 ¹⁴ Hz is incident on a sodium surf	ace at a rate o


υ,	(1)	2.5×1	10 ⁻¹⁰ Js n surfac	⁻¹ . Dete	rmine t	he num	ber of	photons	per s	econd in	ncident	on the

(ii) A graph of $E_{\rm k\,max}$ against f for the sodium surface is given below.

I. Calculate the work function of sodium. [2]
II. Draw a line on the graph to show how $E_{\rm kmax}$ varies with f for a metal which has a greater work function than sodium.	 h
III. The rate at which light falls on to the sodium surface is increased from 2.5 × 10 ⁻¹⁰ J s ⁻¹ to 3.0 × 10 ⁻¹⁰ J s ⁻¹ . Explain clearly why the graph would no change.	t

7. (a) The following circuit is used to find the pd across an LED when it is switched on.

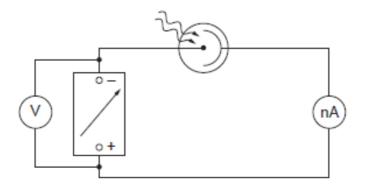

Aled decides that the LED is switched on when a current of 10.0 mA passes through it. He adjusts the variable power supply and records the switching-on pd. He repeats this procedure for different LEDs which emit light of different wavelengths. His results are tabulated below.

[2]

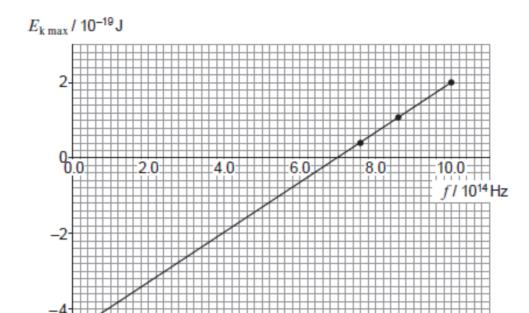
Complete the table.

Wavelength λ of LED / nm	$\frac{1}{\lambda}$ / m ⁻¹	Switching-on pd / V (± 10%)
465	2.15 × 10 ⁶	2.78 ± 0.28
569	× 10 ⁶	2.26 ±
660	1.52 × 10 ⁶	1.91 ± 0.19
820	1.22 × 10 ⁶	1.47 ± 0.15
890	× 10 ⁶	1.44 ±
950	1.05 × 10 ⁶	1.29 ± 0.13

- (ii) Complete the graph by plotting the two missing points whose values you have calculated together with their error bars.[2]
- (iii) Draw the line of maximum gradient and the line of minimum gradient through the error bars.[2]


(b) Conservation of energy applied to an electron and photon involved in the light emitting process of the LED gives:

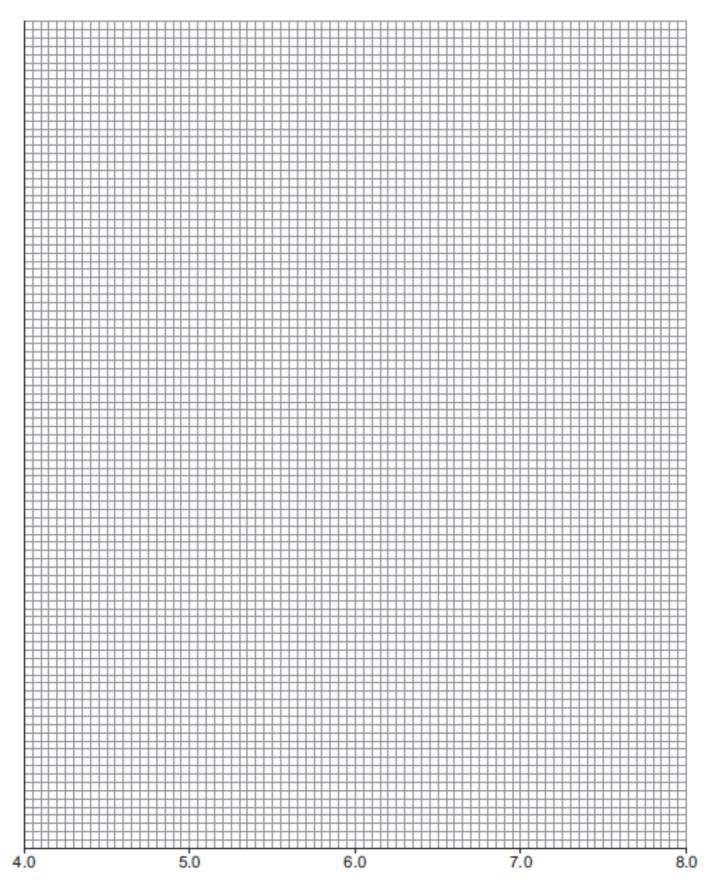
$$eV = \frac{hc}{\lambda}$$


(i)	Us	e y ab	our	two ite u	o lin unce	es f erta	fron inty	to:)(iii) an a	to app	obt rop	ain riat	a v te n	/alu um	e fo	or the	ne f sigr	Plar	nck ant	fig	ure	ant s.	alo	ng	with [5]
••••							•••••																•••••			

$r = \frac{hc}{\lambda}$		m the relations
	10.0 mA is t	

(d) The Planck constant can also be determined using the photoelectric effect. Light of various frequencies is incident on a calcium photoelectric cell as shown and the maximum kinetic energy, E_{k max}, of the emitted electrons is determined for each frequency, f.

The following graph is obtained.



(i)	Determine a value for the Planck constant.	[2]
(ii)	Determine a value of the work function of calcium and explain why no data poi are possible below a frequency of $6.9 \times 10^{14}\text{Hz}.$	nts [3]

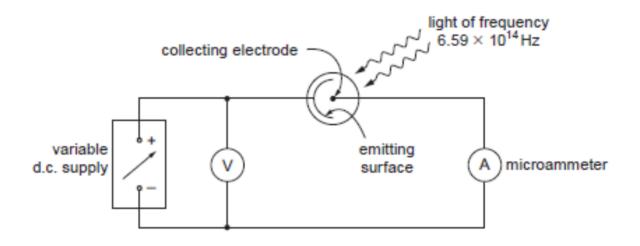
(c) Different frequencies of light are used with a correct circuit and the following results are obtained.

Frequency/10 ¹⁴ Hz	5.1	6.0	6.9	7.5
$E_{k \text{max}} / 10^{-19} \text{J}$	0.36	0.93	1.50	1.95

(i) Plot $E_{k\max}$ (y-axis) against frequency (x-axis) on the grid below and draw a line of best fit through your data. [3]

(ii)	Explain whether or not your graph is in agreement with Einstein's photoelectrequation.	3]
(iii)	Calculate a value for the Planck constant using the gradient of your graph.	3]
•••••••		****
(iv)		an 2]
		••••

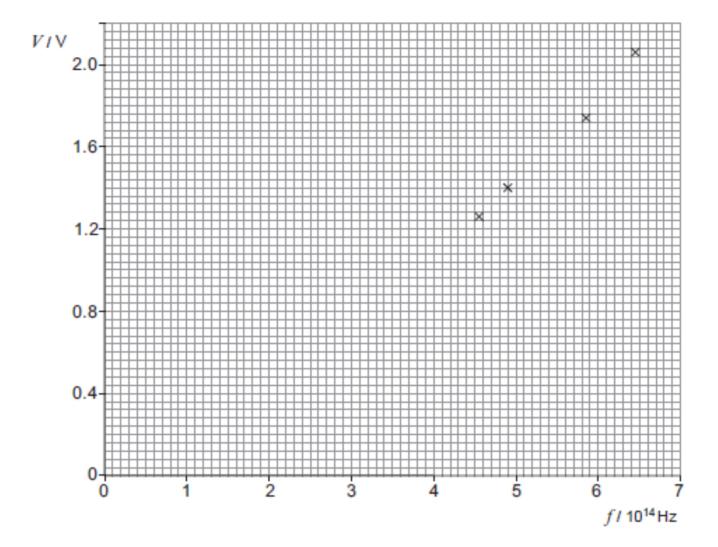
^{13.} 8.	(a)	(i)	Light of frequency less than $\frac{\phi}{h}$ cannot eject electrons from a surface of work
			function ϕ , even if the light intensity is increased. Explain this in terms of photons.


_

[3]

(ii) The emitting surface in a vacuum photocell is known to be made of one of the metals listed below (with their work functions).

Metal	caesium	potassium	barium	calcium	zinc
Work function / 10 ⁻¹⁹ J	3.12	3.68	4.03	4.59	5.81


The photocell is included in the circuit shown, and illuminated with light of frequency $6.59 \times 10^{14} \, \text{Hz}$.

With zero pd applied, the microammeter indicates a current. At some pd between 0 V and 0.35 V the microammeter reading drops to zero.

Determin clearly.								[4]
 	 		 		 	 	• • • • • • • • • • • • • • • • • • • •	
 	 	• • • • • • • • • • • • • • • • • • • •	 		 	 		
 	 		 	• • • • • • • • • • • • • • • • • • • •	 	 		

(b) Rachel varies the pd across a light-emitting diode (LED) and notes the value, V, for which she can just see light from the LED. She also notes the frequency, f, of the light, as supplied by the LED's makers. She does the same for three other LEDs and plots V against f (below).

It has been suggested that V and f are related by the equation:

$$V = \frac{h}{e} f$$

(i) On the graph draw the line of best fit. [1]

(ii) Discuss the extent to which the graph supports an equation of this form. [2]

(iii)	Determine the gradient of the graph, and hence a value for h to an appropriate number of significant figures. Assume that the equation predicts $\frac{\Delta V}{\Delta f}$ correctly. [3] Show your working clearly.

(ii)	The current indicated by the ammeter is 0.80 µA. Calculate the number of electrons per second emitted from the caesium surface, stating your assumption. [3]
(iii)	Hence calculate the <i>probability</i> of a photon of this frequency ejecting an electron from a caesium surface. [1]
(iii)	