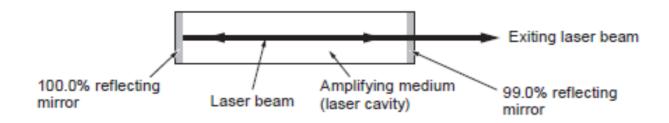

6. (a) The diagram shows how the absorption spectrum of sodium atoms may be produced.


Describe the appearance of the absorption spectrum, comparing it with the emission spectrum of sodium atoms. [3]

(b) A simplified energy level diagram for the amplifying medium of a 4 level laser is given.

	(i)	Referring to populations, explain the part played in the operation of the laser by	
		I. transition A;	[2]
		II. transition D.	[2]
	(ii)	Calculate the wavelength of the radiation emitted by stimulated emission from laser, and name the region of the electromagnetic spectrum in which it lies.	the [4]
(c)	Most lectu filters	laser pointers produce polarised light. Discuss whether or not students attending re in which a laser pointer is used should be given spectacles fitted with polaris (polaroids) to wear for safety during the lecture.	g a sing [3]

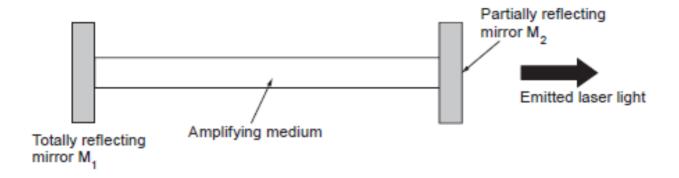
² 4. A laser has two mirrors either side of the amplifying medium as shown.

(a)	Explain the purpose of the 99.0% reflecting mirror and the 100.0% reflecting mirror.	[2]
(b)	Explain the purpose of a population inversion in the laser cavity.	[3]
(c)	(i) The light intensity inside a powerful laser is 2.0 × 10 ¹⁵ W and its waveleng	uth ie
(6)	 (i) The light intensity inside a powerful laser is 2.0 × 10¹⁵ W and its waveleng 1.05 μm. Show that this corresponds to approximately 1 × 10³⁴ photons per sec 	cond. [2]

Show that the momentum of a 1.05 μm photon is approximately 6 × 10 ⁻²⁸ kg m s ⁻¹ . [1
Show that the force exerted on a 100.0% reflecting mirror by a beam of powe 2.0 × 10 ¹⁵ W is approximately 1 × 10 ⁷ N. [2]
Calculate the strain produced in a laser structure if the power of the beam between the mirrors is 2.0×10^{15} W. You may assume that the structure of the laser cavity has a cross-sectional area of $43\mathrm{cm}^2$ and is made of a material with Young modulus 2.8×10^{11} Pa.

3.	3.	A sim	plified	d energy level diagram for a 3-level laser system is given.	
				P ————	
				U 1.79 eV	
			gro	und state, L — 0	
		(a)	(i)	Calculate the wavelength of light emitted by stimulated emission.	[3]
			(ii)	Assuming that some photons of this wavelength are already present in the la cavity, explain why a population inversion is needed for light amplification to toplace.	

(b)	The	laser produces a light beam of power 6.0 mW.
	(i)	Show that the number of photons emitted per second is approximately 2×10^{16} s ⁻¹ . [2]
	(ii)	Calculate the momentum of the light leaving the laser per second. [2]
	(iii)	Calculate the force exerted by the light beam on a perfectly reflecting surface, if it strikes the surface normally.


(a)	Explain why a population inversion is not usually possible with a 2-level esystem pumped using light.			
	(ii) State an advantage of se	emiconductor lasers and an example of their use.		
(b)	Explain how 3-level and 4-level laser systems work and the advantages of a 4-system. Refer to the diagrams in your answer.			
	3-level system	4-level system		
	E ₃	E ₄		
	E ₂	E ₃		
	L ₂	E ₂		
	E ₁	E ₁		
•••••				

,

5.

(a)	Explain how a 3 level laser operates, explaining also why a 2 level laser is not pos	ssible. 6 QER]

The simplified diagram shows the cavity of a laser.

(i)	The wavelength of light from the laser is 633nm. Calculate the energy of a photon of light emitted by the laser. [2]
(ii)	The power output of the laser is 1.0 mW. Mirror M ₂ transmits 1 in 500 photons. Determine the number of photons per second incident on mirror M ₂ . [3]