Name:	
MF	
uestions	
ate:	
ime:	
otal marks available:	

Questions

Total marks achieved: _____

The diagram shows a resistor of resistance R across a cell of e.m.f. ε and internal resistance r.

Which of the following is a correct expression for the current *I*?

- \square **A** $I = \varepsilon / r$
- \boxtimes **B** $I = \varepsilon / R$
- \square **C** $I = \varepsilon / (R + r)$
- \square **D** $I = \varepsilon / (R r)$

(Total for question = 1 mark)

Q2.

The diagram represents a resistor of resistance R in a series circuit with a cell of e.m.f. ε and internal resistance r.

Which of the following correctly gives the potential difference *V* across the internal resistance?

_		_		
thoon	linanh	voicetui	tor	$\alpha \alpha m$
แเซดแ		vsicstut	w.	COIL

- \square **A** $V = \frac{\varepsilon(R+r)}{r}$
- \square C $V = \frac{\varepsilon(R+r)}{R}$

(Total for question = 1 mark)

Q3.

A torch uses a 1.5 V dry cell. Over time, the light intensity produced by the torch decreases as the cell 'goes flat'.

Student A sets up the following circuit in an attempt to measure the e.m.f. of a cell.

Explain why the voltmeter reading will **not** be the e.m.f. of the cell.

(2)

(Total for question = 2 marks)

Q4. A.	When a cell of e.m.f. 1.5 V is connected across a resistance of 6.6 Ω the current is	tutor.com Ω.21
Calculat	te the internal resistance of the cell.	
		(3)
	Internal resistance =	
	(Total for Question = 3 ma	irks)
Q5.		
	uses a 1.5 V dry cell. Over time, the light intensity produced by the torch decreases 'goes flat'.	as
Student as 1.15	t B correctly determined the e.m.f. of an unused cell as 1.63 V and its internal resista $\Omega.$	ance
-	eated this after the cell had been used for several weeks. When a voltmeter was ted directly across the used cell, the reading was 1.36 V.	
	of resistance 5.92 Ω was then connected across the used cell and the reading fell to	0.84
	t A suggests that the cell goes flat as it is used because the e.m.f. decreases. t B suggests it is because the internal resistance increases.	
Determ	ine whether either student is correct about the changes in the cell as it goes flat.	
		(5)
 @TOPhys	sicsTutor facebook.com/TheOnlinePhy	sicsTutor

theonlinephysicstutor.com
(Total for question = 5 marks)

Q6.

A cell may be represented as an e.m.f. ε in series with an internal resistance r.

A student used the relationship $V = \varepsilon - Ir$ and a graphical method to determine ε and r. She connected a cell in a circuit and took a series of measurements of the current I in the cell and the potential difference V across the terminals of the cell.

(a) Complete a circuit diagram of a circuit she could have used.

(2)

(b) The student's measurements are shown in the table and plotted on the graph.

I / mA	V/V
27.5	3.97
41.0	3.94
51.6	3.90
78.6	3.88
143.0	3.75

Determine values for ε and \emph{r} from the graph and show how you obtained your answers.

	(4)
$arepsilon = \dots $	
r =	

(c) Explain how the graph could be constructed to obtain better values for ε and r.

(2)

theonlinephysicstutor.com

Q7. The diagram shows a circuit which may be used to find the emf ε and internal resistance r of a cell.

(a) As the resistance R of the variable resistor is varied, values of the current I in the circuit and the terminal potential difference V across the cell are recorded.

Sketch the graph of V against I and explain how it may be used to determine ε and r.

(5)

theonlinephysicstutor.com
*(b) We usually assume that ammeters have negligible resistance and voltmeters have infinite resistance.
The determination of ε and r is not affected by using an ammeter with non-negligible resistance but is affected by using a voltmeter with a low resistance.
Explain why.
(4)
(Total for Question = 9 marks)